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ABSTRACT

This analytical study focuses on the response of unsymmetrically laminated cylinders

subjected to thermally-induced preloading effects and compressive axial load. Attention

is focused on the displacement response and three-dimensional stress state of cylinders

having [+45/-45/Ozlzs, [+45/-45/Oz]cr, and [Oz/-45/+45],r stacking sequences with

clamped end conditions. The methods used in the analyses involve derivation of the plane

stress and three-dimensional equilibrium equations and boundary conditions using the

method of minimum total potential energy with nonlinear strain-displacement relations.

The plane stress equations and boundary conditions are solved in closed-form for the

displacements and intralaminar stresses. The three-dimensional equilibrium equations

are then solved for the interlaminar shear stress xx, using the results of the plane stress

problem. For the three cylinders analyzed, the radial deformations are observed to be

larger for the unsymmetrically laminated cylinders, particularly in the boundary layer

near the ends of the cylinders. With the nonlinear effects included, the boundary layer

length increases with increasingly compressive axial load. If the thermally-induced

preloading effects are not included, the deformations and intralaminar stresses are under-

predicted. Also, it is observed that the boundary conditions for the axial load must

include the thermally deformed shape of the cylinder. At low axial load levels, it was

seen that both the fiber-direction intralaminar stress and the interlaminar stress _x, are

dominated by the thermally-induced preloading effects. However, the intralaminar stress

perpendicular to the fiber direction and the intralaminar shear stress are largely

unaffected by the thermally-induced preloading effects.
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I. INTRODUCTION

Cylinders made of composite materials are structurally efficient and well suited to

manufacture by automated fiber-placement techniques such as filament winding.

Composite cylinders are also more tolerant of unsymmetric stacking sequences than are

flat plates. Llnsymmetrically laminated plates warp when cooled from the consolidation

temperature during manufacture. This effect becomes problematic for the designer, since

the degree of warp must be anticipated and accounted for before manufacture. Because

of the difficulties brought about by the manufacture of unsymmetrically laminated plates,

there is a tendency to view the idea of unsymmetrieally laminated cylinders with the

same skepticism. However, due to the axisymmetric geometry inherent in the cylindrical

form, cylinders resist much of the warping observed in the manufacture of plates. In

practice, cylinders which are manufactured with the filament winding process are

sometimes purposely made with unsymmetric stacking sequences because it is easier and

less cosily to complete the winding process without changing the fiber orientation on the

outer layers of the cylinder.

One of the benefits of designing a structure with composite materials is the ability to

tailor the structural properties of a member not only through changing the material type

or thickness, but also by taking advantage of the couplings between bending, stretching,

and sheafing possible through changes in the stacking sequence of the wall of the

structure. These couplings may impart a structure with behaviors which are beneficial

under certain types of loadings, for example, increased buckling resistance to
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compressive axial loads. For tubular members such as cylinders, these couplings will

also impart to the structure a nonuniform shape as a result of cooling from consolidation

temperature to ambient temperature. Although considerable attention to the response of

composite cylinders has been given by others in the past, the combined effects of

thermally-induced preloading effects and a compressive axial load on unsymmetrically

laminated cylinders have previously received little or no attention. In fact, buckling

analyses of unsymmetric cylinders are available in the literature which completely and

erroneously ignore thermally-induced deformation (ref. 1).

The purpose of this work is to investigate the effect of applying a compressive axial

load to an unsymmetrically laminated cylinder which has already deformed in a

nonuniform manner due to a temperature change from the consolidation temperature to

ambient temperature. The work is important because cylinders subjected to a

compressive axial load are prone to buckle. Analysis of the buckling phenomenon is a

difficult problem. However, a key component of the buckling analysis is the prebuckling

analysis. The predicted prebuckling state for an unsymmetrically laminated cylinder

deformed by thermal effects before loading could be significantly different than the

prebuckling state for that cylinder predicted by an analysis which ignores thermal effects.

Though interest here will not extend to a buckling analysis, as it is considerably beyond

the scope of the present effort, the formulation addressed here must be considered if a

buckling analysis is to be developed. The analysis developed here is indeed a

prebuckling analysis. Implicitly, it will be possible to determine if ignoring thermally-

induced deformations may have an impact on predicting buckling loads. Towards this

3



end, the equilibrium equations and consistent boundary conditions which govern the

response of thin cylindrical panels under general loadings will be derived in the second

chapter. In the third chapter, these equations will be simplified due to conditions of

axisymmetric geometry and response for the case of compressive axial end loading. The

equations will be solved, to include the thermally-induced preloading effects, for the

axial, tangential, and radial displacements as a function of the cylinder's length

coordinate. These displacements will be calculated for three cylinders with different

stacking sequences and are presented in graphical form.

In the fourth chapter, the solutions derived previously for the displacements will be

used to obtain relations for the intralaminar stress components within each layer of the

cylinder. Relations between the stress components and the radial coordinate for clamped

boundary conditions and several axial load levels will be graphically presented for the

three cylinders. In the fifth chapter, the equilibrium equations and boundary conditions

in cylindrical coordinates for a three-dimensional stress state will be presented and

simplified based on an investigation of the magnitudes of the coupling terms in the

equations. The sixth chapter will present a solution of the simplified three-dimensional

equilibrium equations and boundary conditions by making use of the stress-strain

relations of the fourth chapter, which are of dosed form. The significant interlaminar

stress component will be calculated for each of three cylinders and the results will be

graphically presented.
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A. Cylinder Nomenclature and Geometry

The cylinder is referenced to a rectangular coordinate system with the axis of the

cylinder centerline coincident with the X axis, as shown in Fig. 1.

Z 0

Fig. 1. Cylinder Coordinate System, Geometry, and Nomenclature.

For convenience, the origin of the global coordinate system is chosen to be at the

midspan of the cylinder. Naturally, a cylindrical coordinate system is used for the

analysis. The cylindrical coordinate system consists of an x axis which is coincident with

the X axis, 0, which is measured positive from the +Z axis toward the +Y axis, and r,

which is measured outward from the X axis. The cylinder has a length L, a mean radius

R, and wall thickness H. Within the cylinder wall, a z coordinate is defined as being

positive outward, measured from the mean radius R. The axial, tangential, and radial

5



displacementcomponentsof apoint in thecylinderwall aredenotedby u(x,0,r), v(x,O,r),

and w(x,0,r), respectively. The axial displacementu(x,0,r) is measuredpositive along

the +X axis, the tangential displacement v(x,0,r) is measured positive in the +0

direction, and the radial displacement w(x,0,r) is measured positive outward in the r

coordinate direction.

The derivation of the governing equations follows in the next chapter.
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II* DERIVATION OF THE EQUILIBRIUM EQUATIONS

FOR THIN CYLINDRICAL PANELS

Ae The Method of Minimum Total Potential Energy

The total potential energy of a body is given by

1I = U + rllo,,a,

where U is the grain energy of the body given by

xfffU = -_ v'%%dV,

zO and e¢ being the stress and strain tensors. The potential energy

as

fff, B,,,,d,,- ff

(1)

(2)

II_ d is defined

(3)

where B t is the body force distribution acting on the volume V of the body, Tl are the

surface tractions acting over the boundary $ of the body, and uj is the displacement

field.

For thin cylindrical shells, the swain energy expression of eq. (1) can be simplified

by assuming a state of plane stress, i.e., by assuming that a,,, _er, and L,, are zero.

As a further simplification, the body force distribution will also be assumed to be zero.

Considering preloading deformations and including these two restrictions, eq. (1) can be

expanded to yield

7



fff [(")TT : .-_ V Oz-Ox t'x + 08-00 E:O +

- ff_(T=u+ To_+T?_)dS.

(4)

For a cylindrical panel with mean radius R, length L, opening angle 13, thickness H,

bounded by the six surfaces x=-_, x= - 0=- 0=+ r= and2' ' 2'

r = R+ H ¢Xl. (4) becomes
2'

,.s+_s _.+_Le.._
2 2 2

r- __H_.-! o---E
2 2 2

(_

where

(6)

is the potential energy of the applied loads. The stress components superscripted with

a "P" denote preloading effects. These components could be due to imperfect cylinder

geometry, thermally-induced deformations, or any other influence unrelated to the

loading.

The functional in eqs. (5) and (6) represent the total potential energy of a cylindrical

panel under the assumption of plane stress. This functional will be minimized in a later

section through the methods of variational calculus.

8



Bo Assumptions Related to Thin Shells

The following are Donnell's assumptions for the kinematics of deformation •

u(x,O,r)=u °(x,O). zp;(x,o)
a

v(x,O,r) = v °(x,O) + Zpo(x,O)

w(x,O,r)= w*(x,0).

(7)

In the above, the local thickness coordinate z is given by

z = r - R, (8)

the superscript zero denotes displacements of the cylindrical panel's reference surface

taken at the mean radius R, and the/3's are the rotations at the reference surface given

by
p. Ow*

at

p_= 0w°_o

R/90

(9)

Note that the displacements u °, v °, and w* and the rotations p o and 13g are relative

to a perfectly cylindrical panel before any preloading effects. The pertinent strain-

displacement relations in cylindrical coordinates are

'*=_÷ 2_at)

R_ r 2_ ri90 )
8v _ Ow #w

V_e at rSO rigO at

(10)

For thin cylindrical panels, the approximation

r=R (II)

9



can be made with sufficient accuracy.

eq. (11), the strains become

Substituting eqs. (7) and (9) into eq. (10) using

O O

'x = 'x + ZKx

0 O

ee = go + D_e

0 0

Y_ = Yx_ + L'x:xe ,

(12)

where
, 0u* I o2

o Ov ° w* 1.o 2

*' - _'_ +-T ÷7P.

o _-___°+__°"° +p:p:
%0 _ XO0

° a13: ° a13: o ap: alg
ru ax ' r'° Ra0' ru° ax RaO

(13)

The stresses within the cylindrical panel are given by

= - - _ y_)

P
where ,_, ,_ and V_o are the strains due to preloading effects.

Equation (14) can be rewritten as

(14)

(lb')

where

10



p -- p _ p -- p

e -- e - e QuY,,e)oe :(Ql2ex +Q22e e +- e

x_e = (Q16% + Q26¢o +

(16)

If the preloading effects are due to thermally-induced deformations (from a

temperature change such as from consolidation temperature to room temperature, for

example), then P
Cx = axAT

p
¢e = %AT
P

(17)

where _z, a 0 and a_e are the coefficients of thermal expansion of the material in the

cylindrical coordinate system. If this is the case, then the stress-strain relation of eq.

(14) can be written as

o x = Qlt(tx-axAT) + Ql2(t:e-aeAT) +Ql_(Yxe-CtzeA T)

oe --_,2(,x-a,,a/) +_22(,e-%a/) ÷_2_(y_o-et_a/) (18)

or

(19)

where
T

0.= +Q,..o+
(20)

Here the superscript "T" denotes that the preloading effects are thermally-induced.

The stresses ozr, Ùer, X_e would be the stresses at a point arising from a temperature

11



change if the composite is fully constrained from any deformation. Since, in general,

each layer in the laminated cylindrical panel has unique values for Q_j, %, =6, and axo,

there are separate equations, eqs. (19) and (20), relating the strains c_, co, and Yx0, and

the temperature change, AT, to the stresses in each layer.

Ce

by

Specification of the Potential Energy Due to External Loads

In the absence of body forces, the potential energy due to applied tractions is given

Htma---ffs [Txu * Tev * T_w]ds , (21)

where Tx, To, and T: are the known applied tractions acting on the surfaces of the

cylindrical panel and the tractions and displacements u and v are functions of x, 0, and

z, and w is a function of x and 0. Substituting eq. (7) into the above,

=- fL
0 0

+r.(x.o.z).,0(_.o)]a_.

(22)

As shown in Fig. 2, considering the tractions acting along the x=+L/2 edge of the

cylindrical panel, the contribution towards Ht,,a is

°P

",.,L.._,=-/..:,,
2 2

//

fz + _ + _ 4- 4-
m

(23)

12



Z

_'_ _T_'z) '/ T'e(+L/2'e'z) x(+L/2,e,z )

X

Fig. 2. Tractions acting on the x = +L/2 edge.

Since u ° , v °, w ° , I_°, and 13e are not functions of z, the integration with respect to

z can be distributed, resulting in

The integrals with respect to z are the resultant forces and moments acting along the

x = +L/2 edge and are defined by

13



tI

÷H_

+a_

2

I!

LM;(O)= +-_,o,_
!!

M;(O)= ?T. +_,O,Z (25)

Fig. 3.

/
\

Z

/°i _) N_(O)

" • _ N_(e)

Stress Resultants acting along the x= +L/2 edge.

These resultants have the dimension of force or moment per unit circumferential length

and they are illustrated in Fig. 3. Substituting the definitions of eq. (25) into eq. (24),

the contribution towards rrto_a due to the tractions acting along the x= +L/2 edge can

be written as

"*2{N;(a)u
(26)

In a similar fashion, the contribution to H_,,d due to tractions acting along the x =-L/2

14



edgecanbewritten as

L £'rfs,_ .__L-- _-_t (O)u - ,o +M_-(O)p - ,o
2 2

where the resultant forces and moments along the x =-L/2 edge are given by

(27)

H H

//

1I

It

(28)

These resultants have the dimension of force or moment per unit circumferential length.

The tractions and associated resultants at x =-L/2 are shown in Fig. 4 and Fig. 5.

Z
0

- /,,.;,(/ / -
/_;O_>To(-t.,m,o,,z>_,..7]"T('t't2'0'z)

]:_. 4,, Tractions acting along the x =-L/2 edge.

15



Fig. 5.

u'3e_

N_,(O) \.

M;o(e)_ ,(e)

z

='-x

Stress Resultants acting along the x =-L/2 edge.

Referring to Fig. 6 and considering the tractions acting along the 0= +/_/2 edge of

the cylindrical panel, the contribution towards Hk_,! is

(29)

Since u °, v °, w °, [Iz°, and _ are not functions of z, the integration with respect to

z can be distributed, resulting in

16



Tz(X,+p/2,z)

z 0

/'; I ,//
x

1_. 6. Tractions acting along the 0= +/3/2 edge.

L"II_=a]e.,ls=- =__L + ,z u ,+
2 2

tJ-_ _, 2 ) J +k 2) t.--i _, 2 ) J_ 2)
(30)

The integrals with respect to z are the resultant forces and moments acting along the

0=+8/2 edge. They are defined as

B H

÷H ÷H

.1I

(31)

These resultants have the dimension of force or moment per unit length. The orientation

17



of these stress resultants is shown in Fig. 7.

F_o 7°

, _- .......... N_(x) - - Lox_x

Stress Resultants acting along the 0= +fl/2 edge.

The contribution towards IIk,.d due to the tractions acting along the 0= +/3/2 edge

can therefore be written as

(32)

In a similar fashion, the contribution to IIk,,_ due to tractions acting along the 0=-///2

edge can be written as

where the resultant forces and moments along the 0=-/_/2 edge are given by

03)

18



H //

// //

÷_H

2

(34)

Fig. 8 and Fig. 9 show the tractions and associated resultants acting on the 0 =-B/2 edge.

Fig. 8.

b \ ___

•r:(x,-pray) _ TO(x,-p/_)

Tractions acting along the 0=-[312 edge.

l_o 9o

Y

A /

Stress Resultants acting along the 0 =-/3/2 edge.

19



Finally, the tractions acting on the top and bottom surfaces of the cylindrical panel

shall be considered. In this work, only loadings normal to these surfaces will be

considered, i.e., T_, and Te will be taken as zero. These are illustrated in Fig. 10.

Tz(x,O,+H/2)

J
T,(X,e,-H_)

F'_. 10. Tractions acting on the top and bottom surfaces.

With this limitation in the loading on the top and bottom surfaces, the contribution to

IIt,,,_ due to normal tractions acting on the top surface is

rr_l,.._m = - .__L .._ ,e,+ *(x,e)edOdx
2 2 2

(35a)

The contribution towards IIt,_ due to normal tractions acting on the bottom surface is

(35b)

The definitions

061)

and

20



(36b)

are introduced here to give a more familiar meaning to these loadings, i.e., that of a

distributed normal pressure loading with dimensions of force per unit area. Substituting

eqs. (36) into eqs. (35),

2 2

(37a)

and
+t +._

z:- ._L_ ..._ q-(x,O)w *(x,O)RdOdx
2 2

07b)

For convenience, and for ease of discussion, commonly occurring loadings will be

partitioned from the general form of the potential energy due to surface tractions. For

the case of known axial loads applied at the x=-L/2 and x=+L/2 edges of the

cylindrical panel,

(38a)

For bending moments applied along the x=-L/2 and xf+L/2 edges,

,-: Io..'+ I+..+ (38b)

For inplane shearing loads applied along the x=-L/2 and x= +L/2 edges, and along the

0=-#/2 and Offi+BI2 edges of the cylindrical panel,

21



(38c)

For shearingmoments appliedalong the x=-L/2 and x=+L/2 edges,and along the

0 =-///2 and 0= +///2 edges,

.h. .h.

:2 _)_ :._ _)_n_ = .___(o)_ - ,o - . (o)13+ ,o
2 2

÷ 2

2 2

(38d)

For out-of-plane shear loadings applied along the x=-L/2 and x--+L/2 edges,

H 2 Qz-(0)w °f - z',0 _/0 2_.:.._,,_ -:..___._.o)_o

(38e)

For circumferential loadings applied along the 0=-_/2 and 0= +fl/2 edges,

._L ÷L
H 2 _ • p (38t3

For bending moments applied along the 0ffi-_/2 and 0-+_/2 edges,

./. ÷,L

n_= .__i(x)l_ - -. _gCx)_ ,+ .
2 2

(38g)

For out-of-plane shear loadings applied along the el-///2 and 0= +_/2 edges,
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÷_L .L

2 2

For normal distributed loadings q-(x,O) and q'(x,O) applied to the bottom and top

surfaces of the cylindrical panel, respectively,

÷._ ._L

2 (q-(x,O)-q+(x,O))w°(x,O)RdOdx. (38i)

Note that, in this theory, the difference between the normal distributed loadings q-(x,O)

and q'(x,O) has an effect, not the individual distributed loadings themselves. In other

words, distributed normal loadings of q -(x,O) = -q and q "(x,O) =0 would have the same

effect as distributed normal loadings of q-(x,6) =0 and q*(x,O) =q. Hence, since the

theory utilizes only the difference in the loadings, only the difference

q _.q. _q- (39)

shallbe used in the following.The senseof thisnetdistributedload q isoutward

positiveand itactsnormal to thesurfacesof thecylindricalpanel.

It isimportantto note that,in general,the end loads N_- and N_', the inplane

shearingloads N_ and N_, the out-of-planeshearloads Q,- and Q_', the bending

moments M x-and M_', and theshearingmoments M_ and M_ can be known functions

of 0. Also, the inplane shearing loads N_ and N_, the circumferential loads N_ and

N_, the out-of-plane shear loads Qe" and Qe', the bending moments Me- and Me', and

the shearing moments M_ and M_ can be known functions of x. The net distributed

normal load q = q" - q- can be a function of x and 0.
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D. Application of the Method of Total Potential Energy to Cylindrical Panels

Substituting the expressions for the strains given in eq. (12) into the energy

expression for the cylindrical panel, eq. (5), and including the nine loading terms being

considered, results in a rather lengthy but complete expression for the total potential

energy, namely,
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II(u°,v",w") =

I/z, [( %° o o
2 --T 2 2

+ P o + o

+1 ,Is

._. +._

:,- )- :.,. )-+ ._IsM,(O)I], - ,0 - ._isM._(0)(3x + ,0
2 2

+ ._,_(o),o_ ,o -f...',#;(o),o.,o
2 2

.I

•
2 2

,15 .t

+:,._;o_-(o>.(-_,o)_-:,:,(+_,o)_
2 2

+L ÷L

s.__u__ s.2 _ _+ ._L_ ,- - iv_,(x)u
2 2

.I. .L

+ ._,M_(x)_ ,- - ._,M_,(x)_ +_
2 2

L L

+ ._L_N(x)v ,- - .L Ni,(x)v ,+
2 2

÷L_ .L_

._L
2 2

÷L +!

2 2

w°(x,e)RdOdz.

(40)

In the eq. (40), use has been made of eq. (11) and the fact that
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dr = dz. (41)

and the integration with respect to r in the volume integral has been replaced with

integration with respect to z. Grouping terms under single integrals and integrating with

respect to z leads to the expression

lI(u °,v °,w o) =

L_ ÷_
1 o P o

2 2

- q w°]RdOda

- I_

.
+[Oe'(x)w'(x,-_)-O.(x)w'(x,+_)]}_.

(42)
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The stress resultants in eq. (42) are defined as

._-f,___o_ o . . . o ._= Anex+At2ee+A16Yxe+BnK,z+Ba2r, e+B16r,._e Nf
2

.,.R_

fz 2 OedZ o o o o o oN e m ._It

2

H

_ 2
N_e --f,.__, _dz o . . . o . r= Al6ex +Auee +A_Yxe +BI_r_ +Bur, e +B_Kxe - N_

2

.H

2

÷n_

2

.n_
m 2

Marl) fz. lIZ'r.d)_ = BI6_:+_2_g:+_66'y_+DI6K:+D26<+DaaK_II-Mx_.

2

(43)

In the above

+_a +_s
-- p -- p -- p

2 2

.,.B .t.,B

_:-f_' " : f_ (o_ )oedz 2u - e -- p -- p._H .__ 12tz + qT.2ee + QuYxe dr.
2 2

.s__ .n__

: (0,,,.+o,,,:+_,a:,)e
2 l

M:.f. 2 " f,-, (Qllex -- p.__s Z%dz =
2 2

+._n ._n

-:- f,.___o:_: f,.__ (O-_,,_"+0,,,f +0,,,_)_az
2 2

.__n .s

/, f_ -,t
__ .._a .._B •

2 2

(44)
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The superscript "P" denotes a preloading effect, and therefore, these expressions are the

so-called equivalent preloading stress resultants. If the preloading effects are thermally

induced,

N_=N [ . f:.._ ro,dz= fz--_ (Qn°_'+Q12%+Q"a_e)ATdz-- -
2 2

n ÷n_

2 2

.__e ÷n

-- - .__.
2 2

.__n ÷__n

.__n 12ae+ )AT zdz
2 2

÷n__ n_

(45)

These expressions axe the so-called equivalent thermal stress resultants.

The notation

n -- rr(u *,v°,w*) (403

is being used in eq. (40) and (42) to emphasize the fact that the total potential energy is

a function of the displacements, the superscript zero indicating that the displacements of

interest are the displacements of the cylindrical reference surface. The governing

equilibrium equations and consistent boundary conditions will be derived by examining

the variations, or increment, in the total potential energy due to variations, or increments,

in these displacements. Then, considering increments in the displacements of the form
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u vO+ v:,wo+ w:,

the increment of the total potential energy will be of the form

(47)

Ti+ATT=TT(uO o o o o o_+eu1,v +cvl,w +f,wl ), (48)

where ¢ is a small parameter and the quantitiesu:, v:, and w: satisfyallthe

kinematicrequirementsof theproblem.

The incrementedtotalpotentialenergycan be expanded usingeq. (42)as follows:
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+_ - L +cu L 0

. t

(49)

Itshould be noted thatthe equivalentpreloading stressresultantsdo not have increments

because they depend only on the material properties, temperature, and initial

displacements,not the displacementsdue tothe appliedforces. Subtractingeq. (42)from

3O



eq. (49) leads to an expression for the increment in the total potential energy, namely,

+(.:..')A<÷a..<+A._A<+('o-',')a_;+a.:;

"l

- e qw°(x,O) [RdOdx
J

. -
(50)
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The various strain increments in eq. (50) arise from the basic definitions of the strains

and curvatures, i.e., eq. (13), by substituting the increments in the displacements,

eq. (47), for the displacements in the original definitions. Such a substitution for e o

leads to

.:+a.:_ o(.°*,.,*) 1ax + (L*+ep4)2 " tin)

Discarding the superscript zero for convenience and expanding,

(52)

Substituting eq. (13) for cx,

• ",)2 ,'
(53)

which can be written as

A ¢.=e e., +¢2¢_ , (54)

where ext and e_ are defined as
_U 1

e., =_- +p.p=, (55)

e_=2p,,z. (56)

In a similar fashion
O_V+_VI)

e°+Ae°- R00
W+gWl 1 .... 2

+_ +'_tPe +e Pc,)
(57)

0%,+ o%'t w wt 1.,2 ,, ^ 1 2,- 2
='_ e"_'_+'_+e'_-+_'Po+ePoPet+'_'e Pc, ,

(58)

or

A go=geot+e2ge_ , (59)

where
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(_I W1 (60)

1
(61)

Likewise, the increment in ?,,o is given by

O(v+e%)_u+cut)
+

Yxo+AY_- c_c Rc30 +(Px+eP,,,)(Pe+epQ (62)

8v 8vt+ igu +c c3uz

+e(i3xi3et + _e[3=t) +e2_,q Pot ,

(63)

which can be written as

where

AYae=e Yaet +e2yae 2 ,

/gva _1

r,,o,=_,_ +'-_+P,_Po,+PoP,,,

(64)

(65)

_=P,,,Po, • (603

Finally,
A_=e_,,, ; A%=er_, ; A_=o=ez=o t , (67)

where

(68)

8l)e_

%1- RO8 '

x_ =/a_e_ + Oi_='l .
,Lax rao)
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In the above, use has been made of the definitions

OWl OWl

P.,-----g ; _o,---_'-_ •
(71)

The increments in the stress resultants, in terms of the strain increments just defined,

are given by:

AN x = AllAex + A12 A e e + Al6Ayxe + BIIAKz + BI2AKe + BI6AK_

AN e =AnA¢ x +A22Ae e +AuAY_e + BI2AKx + B22AKe + B26Alcze

ANzo =AIeA¢ x +A_Ae e +AeeAyxo + BIeAx _ + B_A_ + BeeAx_o

AM x ffiBliA¢ z + BI2Ae e + B16Ayxo + DllAK x + DnA _ + DieAKxo

aMo --st2aex +s22A%÷s2_av_e+z>_2A__÷D_,a_ ÷o2,a,_e
AM_e = BIeA¢_ + B26A¢ e + Be6AY_e + D16AK _ + D26Ax e + D66AK_e

(72)

In order to separate the first, second, etc. variations of the total potential energy at a

later point, it is convenient to expand the increments in the stress resultants in terms of

the displacements and redefine those increments in terms of powers of g. Incorporating

the definitions for the strain increments, eqs. (51)-(70), the stress resultant increments

from eq. (72) are

+Bllelcxa +Bl2eKel +BI6eK_e I •

(73a)

These terms can be redefined to give

where

and

AN_=eNx|+elN_,

Nx t =Allest +At2eea +Al6Yxet +BllKxt +Bl2Kel +BlaKze t ,

N,,2=Ane _+At2% +Aleyze 2 •

(73b)

(73c)

(73d)
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Expanding for future reference,

and

xl "L_ rxr_,) ,,_eao e
au l

_ao _ ar Rao)

N.=(2-1A.I3.,2÷1AI2_e,22÷Al#"Pe')"

Using this procedure for the remaining stress resultants,

AN e =A12(e _,, + _2t._) +A22(c %, + c2%) +Au(e"Ge, + e2'L_)

+B12e gxt +B22¢ It.el +B26e K_ t

Redefining,
ANe=eNe +e2Ne2 ,

with
Net--,412¢xt +A22¢ et +A26Yxe I+BI2Kxt +B22Ket +B26Kx.et

and
Ne_--,4ne._ +Az2e 02+A26Yz% "

Expanding for future reference,

eae "-Lax eae)

(73e)

(73f)

(74a)

(74b)

(74c)

(74d)

(74e)
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and

Ne2 =( _ A12 _ zt2 + _ A22 _ et2 +A26 _ xl _ et ) •

(74f)

Likewise,

+Bl_e Kx,+Bue xe, +B_se x_e, ,

(75a)

or
A_ze = g_rzel + g2_ze2,

(7513)

where (75c)

and
Nxe 2--.4 x6e_ +A_ e e_ +A_y_2 "

(75d)

Expanding,

(75e)

and
1 2 1 2+ . (75t3

The increments in the moments can be similarly defined, namely,

÷Dllexx_ +Dl2er, e,+Dleexze _ ,

(76a)

or
AM' =eMzl +g2M'_,

(76b)

with
Mz_ =BII ez t +BI2 e e t+Bl6Y_et +DI l_z_ +Dl2_et +Dl6Kze_

(76c)
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and M_ =BIt g_ +BI2 e e2 +Bl6Yxe 2 , (76d)

where

and

ax RaO _ ax RaO

1 2 1 2+
M,=('_Bx, I_., +'_B,213e, Bt6[_x,[_e,) •

(76e)

(76t3

In a similar manner,

+Dr2 e gx t +D22gXel +D26 gK_ t ,

(77a)

or
A Me=gMet+g2Me2 ,

(77b)

with
Me I =Bl2ezt +B22 • 01+B26Y_t +D12Kxt +D22_t +D2sK_

(77c)

and
Me2=B12e _+ B22ee2+ B26Y _e2 ,

(77d)

where

and

(aul _ ( _t +___+13el_el)

+o,,_.ooo_..ojo_.+o,./

(77e)
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Finally, At_:B_6(, % *c:%)+B_(c%+t_%)+B.(cno,+t_V_)
+DI_,K.,+Duexo,+D_, _.o,,

where
AM, o=eM, o +¢2M, o2 ,

with

and

Expanding for future reference

Mxo =Bll _ _ ( i_ 1 w:

+_-_ +P.P,,+PsP.,)

ap_, ap0, ( ap0, ap.,

and
M (1,, _ :+1 B n 2+B _ p

(77t")

(78a)

(78b)

(78c)

(78d)

(78e)

(78t3

With the strain and stress resultant increments defined and expanded, the definitions can

be substituted into eq. (50). This results in
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/- ,P

'L"+A+{__",,+'_'_)( ,+'_-_I__ 1

alI = 2 ._L .__p + oN, c_
2 2

+(,_..,_,_X,,..,,._)+(,,-_0(,,,.+,_,_)

•, - .,,+.01]{s..+{[,,.:,°),,,+(-+.o),,:,o,
IM,-(O) .ot_ I. o'_°.,t+'_-_:(°)':,(+_'°)]',4-

L

[_,:(o).o{_Loi-M_(O),o(+Lo_1+

[..-,"°'L_') "°'L]" )J

+ - },+ot
+ e .__ (,),.- -_,(,), .+

+ - +,+(+.++)1}+}

(79)

Bxpanding and regroupingin powers of _ leadsto
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2

+ N_y_ + M_x_ + M_xe_ + M_K_}

+ _4{N,., +N,_, + N_s_¥,.%l]RdBd.x

.,{:.._,u.___.o)-,;_o,
• (80)
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The increment in the total potential energy can be written as

AII =oil,+ _2IL_*e 3I_ +c4II4 (81)

The quantifies elI x, ¢2112, _3I_, and c'H 4 are defined to be the first, second, third, and

fourth variations of total potential energy, respectively. The equilibrium conditions for

a cylindrical panel are obtained from the condition

cIIl(ul,vt,wl):O - IIl(uvvt,wl)ffiO , (82)

where the notation indicates rr_ is to be stationary with respect to the displacements

u 1, v 1, w 1. These displacements are the variations in the equilibrium displacements.

The second variation is used to examine stability of the equilibrium displacements.

According to the Trefftz stability criterion, transition from

configuration to an unstable one is characterized by

8 _:2II2(ut,vx,w,)ffiO- 8I_(ul,v,,wx)=O .

a stable equilibrium

(83)

This states that the second variation of the total potential energy should be stationary with

respect to variations in ux, v_, wx.

Interest in the present study foeusses on equilibrium rather than stability. Hence, the

first variation, II1, shall be studied further. The higher order variations, however, will

not be discussed beyond this point.

The first variation can be identified with li t and that quantity is given by
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_L .._

i= -._

2 2

2

.z

• f. 2m-

p.,(-_.) - .;,(e}

.
(84)

A more useful form of the first variation can be obtained by substituting for Nx_, No_ ,

N_, Mz,, Me, , and M_I from eqs. ("/3e), ('/4e), f75e), (70c), (T/e), and (78e). If this

is done and the various terms in this expanded form of II1 are regrouped, the result is
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"[1! = L 2 fd_ (_,'_.%_'__:,

fd,
2

2

L 2._L (x)u ,- - IV_(x)u ,+
2

. ]

(85)

Note the quantifies N:,... M_ have disappeared, as has the factor of 1/2 in front of the

two-dimensional integral. Substituting the strain-displacement and curvature-displacement

relations, eqs. (55), (60), (65), and (68)-(70), into the above, the first variation takes the

form
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+

+£

2

,,or+Le'_lJJ
.

+[._.<.>,.:.(=.-f)-._<,.>..:.(..+f)]
•
+P",-<'>":,('.-f)-";<">

(86)

This is one of the fundamental forms of the first variation for determining the response

of a cylindrical panel. This form can be used directly in approximate schemes such as

the Rayleigh-Ritz method. Further steps, however, are required to obtain the equilibrium
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equations and associated boundary conditions which are of interest here.

E. Application of Integration By Parts

To determine the equilibrium equations and the associated boundary conditions,

differentiation of u_, vl, and w I with respect to the spatial variables x and 0 must be

eliminated. This is done by applying integration by parts to the various terms in

eq. (86). This procedure follows, the results being given on a term-by-term basis:

first term

•, ._ __ "_ _..__f..__f0.___. _0_--f,..__,_. _
(ST)

second term
.L +l

2 cgw _vl.RdOdx
m- m- m_

2

B
• -_ f z...

2 "-'_

(88)

third term

/,.._f..._ :f..._¢,.,¢.__,_
2 2 (Sg)
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fiflh l_rm

._L _t

2

,t ._t

eR_ RS0
2 2 2

2

(90)

sixth term

.__ ._ -_ _..-_
- L fe---_ ax

(91)

,_venth term
,_L .,_ ,z. b...t

2 2 2 2

.L ._ ____ul_e _

(92)

.L

_ "" o_k_N.._ _p._

(93)
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o__ ____o
2 2

L +_ aw awt - •

L

2 WI .

•_ ._ a(_ .___._,,_o,_

(94)

2 2 ,,_

2 _5_RdOdx-LL
2

(95)

The last term on the right can be expanded further by substituting the definition for _t'

from eq. (71), into eq. (95), namely,

.L .t aM_ o_t (96)- _______-/_lOdx •
L ._ aM,_ .... f 2 2

2

Using integration by parts yields

= L

"i - 2 _L22wtRd0ax.

The tenth term can, therefore, be written as
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2 2

-_-w,q...a_e
2 "* 2

.L +_ E'M"w RdOdx
- fx.-_ /e'-_ _i_'-'--"_1 "

eleventh term

2_t_

-_ 2 RS0 2

(98)

(99)

This can be expanded further by substituting the definition for fle_,

eq. (99), namely,

from ¢q. (71), into

R_ '
(100)

Using integration by parts and substituting into eq. (99), the eleventh term becomes

2 2

"-_ _ "-_ --

-- L..{V'_J..,'+/.--{ " :
2

a2Me

R2i_

(101)
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twelfth term

f,2LL
m-_ 2 (102)

Using thedefinition of Ooa, in eq. (102),

.L ÷IS
-2L f _2 OMz° °_IRdOdx .

Je.-_ Ox R00fx-- i

(103)

Expanding the second term on the right using integration by parts,

2 2
---

+ w!
m-

2

_f,.__f..___-_,,_o_.
2 Ra0_

(104)

Applying integration by parts to the first term on the right,
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Collecting terms evaluated at -L/2 and +L/2, the first term on the right in eq. (104)

bg_?,omcs

.2p

: (106)

The twelfth term can thus be written

2

:2

2 2

(107)
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Expanding the first two terms on the right for future use, the twelfth term becomes

L.___f_.__"- ,_od=
2 2

--L-"g+I'+i)"'Li' i) %, +.,, ,,,..,/ \ ....-, /

+J.-+L_ ,it,.-+

_f=.__:0._+_,,,:o,,,,_,,:
2 Ra0_

(108)

Thirteenth term

._=L ._j_M,_ RdOdx =
2 2 JKC_ "---_ "- 2

-S:.__So..+°''-,_o_,_°'_
(109)

Substituting the definition of I_x_ into the first term on the right above and integrating by

parts:

_,[_':o_:,]1o.__"::-L_ _.L -_- _.__'_
Z'-'_ 2 -] 2

:-/._[,,,.r_._"(x-"_l_,• -:,[ _, _)--ff_, _)1 Z.-+ '-_ -_- '-_ (no)

:- ,+_,2 .._ _ .._

[+-_}_,+ _)_"' "[_"-,]L ='
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or
+k

2 2

•[
.{

:2

(111)

Substituting the definition of p., into the second term on the right of eq. (109),

(112)

Substituting the results of_. (111) and eq. (112) into exl. (109), the thirteenth term can

be written as

.k ._ aa

f 5 f '. u_-""eeB_ =
o=.--i oo.-_ RaO

IC[ _' 7y't' 711,._{ 7 '' Y ._1

+.f.._{,,, _,_+fo.._[7-_.,,,lL.___,,_
2 2

•" -{ a'u_
-s,.__s.._=--_w.,,,,,,,,.

(113)

Expanding the first two terms on the right for future use,
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,L ,!2 ap,

2 2

+[ MJ+L + f_"(+L+ fJ_+M_(-L,+_Lt(-L,+ O--]

_, : :)l : 21 _, : 2) t : :}J

fx.--_ 2

(114)

The terms involving M_, M_, Mo_ and M_ in the line integrals in eq. (86) must

be expanded in terms of w z and integrated by parts also. These two terms follow.

T¢rm involving M_ and M_ in line integral from O----B/2 to 0= +8/2:

Substituting the definition of f_ol into this term and integrating by parts,

+1

:..:;}.°)-

=- +fo:_ 
[ I, 2 JJ[e._p l

2

(115)

Expanding the first and third terms on the right-hand side,
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+I+

+,(++,oI]
: [-_+J+__L (-_L+__/+MJ-__L (_k -__/

_'_ 2J-'_ 2' 2) _e_ 2)-t_ 2' 2)

+MS+_l_:+L+_l-MJ-__L(+_L__/]
•"t,7/'t 7' 7) +"t,2F't 2' 7)j

+15

+s,.:++.++,+__.+.o_,,+,,_i.+__ (+)2 RO0 _, 2 J 2 RO0 +1 + ,0 Rd0

(11@

Me_ and Me_ in line integral from x=-L/2 to x= +L/2:

Substituting the definition of 13., into this term and integrating by parts,

/,

L++ -
•+ +) s;'+ +)f++ +

2 2

s.= - (x)wl - + ._k itx wl - _
°-2 2

b_,(x),+,.a,+-."llP+-L._+_+__,_j,,,,+ ,_4-

[ t, 2}Jk.-._ 2

(117)

Expanding the first and third terms on the right-hand side,

54



(118)

Substituting eqs. (87), (88), (89), (90), (91), (92), (93), (94), (98), (101), (108),

(114), (116), and (118) into the expression for the first variation, eq. (86), and

combining the boundary terms (i.e., integrals with respect to 0 and integrals with respect

to x), results in
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2

2

(119)

Rc38_, 2JJ

[ _ 2 2/ _ 2) "3, 2JJ _, 2 2/

"
_[2uJ___.__l_u-J_el__X___ll,,.f___,__1

[ _ 2 2) "3, 2} "3, 2JJ _, 2 2}
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For the first variation to bezero, eachterm which is a product involving an increment

in the displacement,in eachof the integrals, must be zero. The Euler equations come

from the two-dimensional integral and the boundary conditions come from the line

integrals along the x and 0 edges. Thus, the three governing equilibrium equations are

_"'x . aN_ _ 0 (120a)

_"-ue + aNe _ 0 (120b)
Ra0

o_u. aM. aM, ±(H_)

N,
---+q=0

R

(120c)

Using the first two equations in the third one, the three equations can be written as

aNx + cWxe - 0 (121a)
/Ix Ra0

0N_ + aN e _ 0 (121b)
R_

82Mx + 2 82Mze 02Me _22ax2 R_'-'-'_+ ,_2_----'_+ N_

+2t7_ o_ +_______ N.+,_----o
ROOc2r eR2802 R

(1210

The variationaUy consistent boundary conditions at the x=-L/2 and x= +L/2 edges of
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the cylindrical panel are

alon2 the x = -L/2 ed_,e:

i) N x -- N_" , or u must be specified,

it) N_e = N_, ot v must be specified,

aM_e + aM_eN_ +N ---_aM,+: _Q;

or w must be specified,

aw must be specified.
iv) MxfM- ' or -_-

(122a)

alon2 the x ffi +L/2 edge:

i) N_ = N_" , or u must be specified,

ii) Nze f N_e , of v must be specified,

N aw + N &,t, aMz + 2 aMxe " aM_e
r_) :-_ ,_--_-_+_ _ - Qx+_ ,

or w must be specified,

aw must be specified.
iv) MxfM* , or -_

(122b)

The variationally consistent boundary conditions at the 0=-8/2 and O--+8/2 edges are:

along the e = -8/2 ed2e:

i) Neffi= Ne_, or u must be specified,

ii) Ne f N e , of v must be specified,

__ aMe aM_ OM_,N'---_+N_' +T_": -Oi+-- ,i_) 'Rae _ ax
of w must be specified,

aw must be specified.
iv) Me = M e , of --_

(123a)
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along the 0 = + _/2 edge;

i) Ne_ : Ne_ , or u must be specified,

ii) NO = No" , or v must be specified,

m)

iv)

N,_ +N _ aM, aM_ aM_

or w must be specified,

01+, must be specified.

(123b)

Note that the expression for the first variation of the total potential energy also involves

four non-integral terms. These are "comer" conditions. Therefore,

at the ¢grncr (x = +L/2, O = +/_/2) ;

2_,0 = u/, +M_,

at the comer (x = +L/2, 0 = -#/2) ;

2U.. =M_ +M_..

at the corner {x = -L/2, 0 = + B/2) ;

at the comer (x = -L/2. 0 = -B/2) :

or w must be specified, (124a)

or w must be specified, (124b)

or w must be specified, (124c)

2Mze = M_ + Me_, or w must be specified. (124d)

At this point, the problem can be specialized to that of a complete cylinder, that is,

__= +13 =+n . (125)p=2n - - p -n, -
2 2

Because the cylinder is complete, the response is a continuous function along 0=_-, and

59



the displacementsat the -B/2 and +B/2 "edges" are unique and therefore can be

interpretedasbeing specified. Equations(123) do not haveto be explicitly enforced.

This alsoholdsfor the "corner" conditions. However, a by-product of the eqs. (123) is

an expression for the out-of-plane stress resultant, Qe, which could be used as a check

of a calculation of the interlaminar stress component %,. Specifically,

aw + _esx +_+_.
-- N _ aMe aM"e (126a)

Oo--N° Rao ax

This shearstressresultantcomplimentstheotherout-of-planeshearstressresultant,Q,,

which isgivenby

IV aw + N aw aM, aM_ (126b)

This out-of-plane stress resultant will be used as a check of a calculation of the

interlaminar stress component _,, in chapter VI.

Attention now turns to specializing the equations for the condition of axisymmetry.
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111. SIMPLIFICATION OF THE EQUILIBRIUM EQUATIONS

DUE TO THE CONDITION OF AXISYMMETRY

The derivations which follow focus on complete cylinders (i.e., _ =2_') subjected to

an axisymmetric loading and responding in an axisymmetric manner. In particular, the

loading considered will be applied axisymmetdc end loads N_*(O)=Nx* and N_(O)=N_.

Therefore, the relations of the previous chapter will be simplified by

0(__..))= 0 and 0( ) _ d( ) (127)
_x dz '

( ) being any response quantity. Under these conditions the kinematic relations simplify

considerably. Specifically, eqs. (9) and (13) become

o _o o

I_ = ---_--; 13.=o

o duO l ao2. o w ° o dv °
- + 2 rx , ee dre= dr = R'; ¥_ - (128)

,_- _; ,_=o; _ =o.

The equilibrium equations, eq. (121) simplify to:

dr
(129a)

dr
(129b)
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d2M_ d%O No
_+N_ --0.
dx2 dx2 R

(129c)

The accompanying boundary conditions at the x=-L/2 and x= +L/2 boundaries axe

at x = - L/2

i) N_ = N_ , or

ii) N_o=N_o, or

_) au_ +H aw ffiO; or
rex

iv) M. = M_, or

u must be specified,

v must be specified,

w mustbe specified,

dw
must be specified.

dx

(130a)

at x = + I-,/2

i) Nx = N _ , or

iv) M. = M_, or

u must be specified,

v must be specified,

w must be specified,

dw
must be specified.

dz

(130b)

Note that for a complete cylinder, the boundary conditions at 0=-/3/2 and 0= +/5/2 are

meaningless. Equations (129) and (130) will be the focus of the remainder of the this

chapter and the following chapter. In the next section, the solution of these equations

for the case of a known axial end load will be derived.
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A. Solution of Equations for the Caseof Axial End Load

The first equilibrium equation, eq. (129a), integrates to

Nx = constant. (131)

Since the axial load is known at the ends of the cylinder, this constant is the applied end

load. It will be referred to simply as N. The second equation, eq. (129b), integrates to

Nxo = anoth_ constant. (132)

In thisstudytherewillbe no externaltorsionalloadappliedexplicitlyto theends of

the cylinder. Rather, the tangentialdisplacementof the end will be specified.

Enforcementofthetangentialend displacementmay wellrequirea torsionalload,$, on

theend. Thistorsionalloadwillbe solvedforaspartof theanalysis.Thus, asa result

of eq. (132),

N_o _-$ (a constant). (133)

To solve the third equilibrium equation, eq. (129c), it is convenient to express all

quantifies in that equation in terms of the midplane displacement w °. Here, the stress

resultants, eq. (43), with the preloading condition being thermal according to eq. (45),

will be used. Only cylinders which are balanced, i.e., those with Al6, A26, and N_

equal to zero, will be considered. This is the situation of many laminates of practical

interest. Such laminates are called balanced laminates. Expanding

• D

N.. N o, N_e, and Mx in terms of w o, c., and V,e results in
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o W ° d2w °

N_ = AI: _ + A12--_ - B11 dr---_

w° B d_v°

d_ °

dr.2

N r=N

w° D d2w°
M==B.:_ +B,2-F +BI,:_ - . _ M:.

0 0

Solving the equation for N= for t_, and the equation for N_o for Y_0yields

(134)

t .o :wj)e_°- A_llN+N/-A12- _- +B u ,
(135a)

and

° ( Ble d2w° $)Y_e = Ass dx 2 +-- "Ass

Substituting these results into the equations for N O and M x in eq. (134) yields

(135b)

+A_(N+<I-N:
A! 1 I '

(136a)

and

. B"(N.N:I-u:.B_'s
A n ' Ass

(136b)

Substituting eq. (136a) and (136b) into the third equilibrium equation, eq. (129c), leads

to the equation governing w ° •
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tl Ax t Ass ) dx 4 AuR R

N/) J

d2w o

dr, 2
(137)

This is a linear differential equation with constant and known coefficients which

depend on material properties, equivalent thermal loads, geometry, and a known applied

axial load N. Hence, this structurally nonlinear problem results in a mathematically

linear problem. Note, however, that the coefficients vary as the applied axial load N

varies. This will be addressed in a later section.

B. Specification of Boundary Conditions

Attention now will be focused on the boundary conditions. A statement has been

made regarding Nx. This statement satisfies one of the four boundary conditions,

namely, eqs. (130a) and (130b), i. For the problem to be properly posed, the three

remaining boundary conditions, eqs. (130a) and (130b), ii, iii, and iv, must be satisfied.

Within the context of the admissible conditions of thermal preloading, general balanced

laminates, and no explicitly applied torsional loads, three physically plausible boundary

conditions can be imposed on the ends of the cylinder, namely:

1 - lubricated boundaries;

2 - simply supported boundaries; and,

3 - clamped boundaries.

In the remainder of this work, it will be assumed that the same boundary conditions
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will be enforced at both ends of the cylinder. Hence, the discussions which follow will

focus on the x=+L/2 boundary only. Since the same boundary conditions will be

enforced at either end, the radial response of the cylinder will be assumed to be

symmetric about the x=0 plane. Therefore, the radial displacement, w°(x), of the

cylinder is an even function of x.

For lubricated boundaries, the ends of the cylinder are free to rotate about the

cylinder's centerline, implying that N_a

and moment M x at the ends are zero.

= S = O. Also, the out-of-plane shear force Qx

For simply supported boundaries, the tangential

displacement v* and the radial displacement w* at the ends of the cylinder are specified,

and the moment M_ is zero. For damped boundaries, the tangential displacement v o,

the radial displacement w" and slope dw.._* at the ends of the cylinder are specified.
' dx

The terminology 'lubricated' comes from the fact that there is no restraint on the

tangential or radial displacement or slope at the cylinder ends, as if the ends of the

cylinder were being pushed together axially with perfectly lubricated plates.

From eq. (130), the formal boundary conditions for lubricated boundaries are

= s = 0 (138a)It

2

2 2

= O, (138b)

and
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(138c)

For simply supported boundaries the conditions are

v ° [_.._L is specified, (139a)
2

W° }x..__z is specified , (139b)
2

and

M:, L.._L = 0 (139c)
2

For clamped boundaries the conditions are

v ° I_.._L is specified, t140a)
2

W° I_..__t is specified , (140b)
2

and

dwO II is specified (140c)

In order to conveniently impose these boundary conditions, they will be expressed in

terms of the radial displacement w°(x) and its derivatives. Therefore, the tangential

displacement v°(x) is required as a function of w °(x) and its derivatives. From eq.

(128), it follows that

67



dx vo(x)=f +cv (141)

where Cv is a constant of integration.

integrating results in,

Substituting eq. (135b) into eq. (141) and

vO(x)- BI_dwOfx)+ S x + C,
A_ d_ A_

(142)

For convenience, and since we expect v°(x) to be odd since wO(x) is even in x,

C v = 0 (143)

In the following, each of the three sets of boundary condition equations, eqs. (138),

(139), and (140), will be presented in terms of the radial displacement wO(x).

1. Lubricated Boundary_ Conditions

Despite the desire to write the boundary conditions in terms of the displacements, the

first of the equations, eqs. (138), which specify lubricated boundary conditions, i.e., eq.

(138a), can be represented most simply as

S = 0. 044)

The two remaining equations, eqs. (138b) and (138c), can be expanded to yield

(145a)

and
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R_ BI_
-n{ S = 0- ,N+N:)+M:+ a_
A11

(1451))

Equation (145b) can be simplified by enforcing the first equation, i.e., by setting S = 0.

Due to these simplifications, the case of lubricated boundary conditions results in the

following two equations,

(146a)

and

-B"(N+N:)+M::o .
A11

(146b)

. Simply Sup_t_rted Boundary_ Conditions

Expanding eqs. (139) in terms of w ° yields

BI6 ] +
dw" S (+L 1

. L = _t 2) is _,_iei_d,
2

(147a)

w*l_.._t is specified ,
2

(147b)

and
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- B 's--o
All A_

(147c)

3. Clamped Boundary_ Conditions

Expanding eq. (140) in terms of w°(x) yields

B16 I +
v°l''-i a_ _ 2

is specified, (148a)

w° Ix.._Z is specified, (148b)
2

and

"_]z.°_ t is specified (148c)

2

C. Solution of the Governing Equation for w°(x)

Equation (137) will now be solved for we(x). The complete solution to eq. (137)

consists of homogenous and particular parts, i.e.,

wo(x)= o w_(x)wh,.,.(x) *

The particular solution is simply the right hand side of eq.

coefficient of w ° , or

(149)

(137) divided by the
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w_m.(x) = Rv_t,Nr-Al2_.-Nr/l=w_n.[A[N_ , (150)

AlIA _ -AI2 2

where the notation w_n '

of x.

The homogeneous solution is of the form

, eX, (151)wl.o.(x) ffiA .

Substituting this assumed form into eq. (137) results in the characteristic equation:

or

R

denotes the particular solution. Note that it is not a function

Bu-ux6/_.4+/2 BI1An 2 Bn -N _.2+ = 0 ,

11A,, A,,) _ a,,R R " A1,)

+ (2BI,AI2-2Bt2Att-AuRN)X 2 +(AltAR-Air2D, tAa -B_, II_6An )x'_A_

There are four roots to this equation, namely

).1.1.3._ "=

_O

(152)

{AuRN÷2AIIBII_2AI1Bit)ltI_AI1BI_2AI-BII_AllR_I_41nlIAU_B_ I BII_AII'IIJ ,i ,ll_

q g
B 1

2(DW4, l - B:n--_jt_ht/R

(153)

Though it is not totally obvious, there is an interesting character to the roots given above.

This is due to the dependence of the roots on the level of the applied axial load, N. The

character of these roots can be examined by studying _t2 instead of 2., i.e.,
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(154)

The first important character to observe is that the discriminant in eq. (154) will be zero

for a certain level of applied axial load N. This load will be denoted by N', given as

il m 2 ,± _4xlAz2_A2x2) ,1An_B_I B_¢4,, +A,zBII-A*,B,_
AnR Ass "

In general, eq. (155) will yield one positive and one negative value for Nil. In this

investigation, attention will be focused on compressive loading of the cylinder and,

therefore, on the negative value of Nil. Hence, Nil will be given by

il

A]IR Ass ) +Al2Bt] -AliBI2 "

For varying values of R, the roots (_.2)1_ have the following characters:

1) For 0 z N • N', the roots (7.2)1_ are complex conjugates given by
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= AtIRN÷2AtIBn-2At2Bn ÷ i _

nAn - BI2t -_ ")

-_A,2Bn-2A,tB,2-AuRN)2+41DnAn-B_I -'-_ _tl-'_aB_eAn_A---Aa_t2!

2/DnAtt -B2n - B_eAnA_))R

(157)

The roots _. axe thus of the form

_'1_/ = +_ = '" a -,-i p . (158)

2) For N ffi N*, the roots 0,2)x,2 are negative repeating real roots given by

(X2),_= _4nRN÷2AnBt2-2AuBn)

t A. )

(159)

Therefore, the four roots 7. are two pure imaginary repeating roots of the form

)'t,2,3,4 = ±_ ffi +ip, ±ip . (160)

3) For N < N*, the roots (_L2)1.2are negative distinct real roots given by

(AuRIt + 2AnBu-2AuBn) * l(.z,,t_,s, _2,,,.t,su_,sl,e,,v),__4[D,,,,' __ e_A._,.- ,,px

(161)

The roots _. are thus of the form
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_'1_,3,4 = + (_1_ = ±i_1' :1:i_2 " (162)

Because of these three different forms for the roots of the characteristic equation

(152), depending on the value of N relative to N*, the functional form of the x

dependence of the homogeneous solution depends on the value of N. Therefore, the

value of N defines the T_l_, as well as the amplitude of the deformed cylinder. For

only theNxd%
the linear problem where the --_ term in eq. (129c) is not present,

amplitude, not the shape, is dependent on the value of N.

The functional form of the homogeneous solution, eq. (151), is as follows:

For 0 _ N • N', from eq. (158)

w_m.(x ) = Alet+,*iP)* + A2et,-iP)* + A3et-u*iP)* + A4et-,,-iP)* .

For N = N*, from eq. (160)

For N < N*, from eq. (162)

(163)

(164)

(165)

Combining these homogeneous solutions with the particular solution, eq. (150), and

considering only the portion of the solution that is symmetric about x =0, the three forms

of the solution of w °(x) are:

For 0 aN>N',
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ARIA22 -A12 2

(166)

For N = N*,

we(x) = Fcos(13x) + Gxsin(px) +

AriA22 -A_

(167)

For N < N*,

AriA22 -AI2 2

(168)

The constants F and G can be determined from the ' application of the boundary

conditions, eq. (146), (i47), and (148), for lubricated, simply supported, and clamped

boundary conditions, respectively.

D. Solution of the Governing Equation for u°(x)

The remaining displacement variable u °(x) can be obtained from the definition of the

midplane axial strain ex°(x), given by eq. (135a), in terms of the material properties,

cylinder geometry, and equivalent thermal loads, along with the solution for w °(x) and

its derivatives. From eq. (128), it follows that

l/ l] It

069)
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where C., is a constant integration. By substituting eq. (135a) into eq. (169),

dx _I N + N r - wO(x) + Bn dZw°(x)..__ ) (170)

This expressioninvolvesconstantsand theclosed-formsolutionfor w °(x)and itsfirst

two derivatives. Therefore, this expressioncan be integratedanalyticallyas

characterizedin eqs.(169),i.e.,

[Alia]
(171)

o 2

+ [BIll f dZw°(x) dr._I c=)) _,

Note thatthesolutionforu °(x)involvesthethreetermswhich aretheintegralof w °(x),

itsfirstderivative,and theintegralof thesquareof itsfirstderivative.Sincew°(x) is

an even functionof x, thesethreeterms are odd functionsof x. Therefore,since

symmetry aboutx = 0 has been assumed,and constantsareeven functions,

{7,= 0. (172)

Sincethesolutionsforw *(x)comprisethreedifferentfunctionalformswhich depend

on themagnitudeof thecompressiveaxialloadN, so willthesolutionforu °(x).The

solutionfor v°(x) was presentedin theprevioussectionin eq. (142)and (143),and

involvesthefirstderivativeof thesolutionforw*(x), givenby eqs.(166),(167),and

(168).

Since the expression for u *(x), eq. (171), involves the integration of the square of

the first derivative of w"(x), the solution is not easily obtainable. However, after much
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algebra, it can be shown that,

for OzN>N',

u°(x)

where

= C_x+ C:sinh(_x)cos(px)+ C3cosh(ax)sin(px)

+ C':inh(2ctx)cos(2px)+ Cscosh(2ax)sin(2px)

+ C6sinh(2ctx)+ CTsin(Zpx)

an(a2 + p2)

Bn(Ga -FfJ) + _ F(o_ + fJ)

G=
All(ct2 + [_2)

c, =(_2-_2)_P_-m(_2P +8')
s(_2+02)

q = (a2-F%2P-vo(_' +_ p2)
s(_2+_)

Cs = -(F2a2 +G2fJ2)l(Sa )

s(_2p+p3)

C,= I+A:,_-_-A_2j _ At--_J A,,_-A_ 2

B_(Fe+ell)+_F(I_-e)

(173a)

and

Btt { F [a sinh(ax)cos(px)- pcosh(ax)sin(px)]v*(x) - -_

- _[acosh(ax)sin(px) - psinh(ax)c,os(px)] }

+ --$ X .

Ass

(173b)
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For N = N*,

u °(x) = C_x +C2x3 + C3sin(px) +C4sin(2px)

+ Csxcos(px) + Cexcos(2px) + CTx2sin(2px)

where

c,= I÷Ax,A-_-A_)(AI---;)

G21_ 2

C2= 12 ; C3=

(2G2 _2F 2 p2 -FG p)

cs = -FGpl8

16p

A12
NoT+ F2 P2 +FG[3 -G2

All

 11oo.A12
; Cs=

All

; c 7 = -_2 p/s

(174a)

and

v°(x) Ble{F [-[_sin(px)] G [sin([3x) [_xcos(px)]i
A_

$

A66

(174b)
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For N < N',

q

A_

A,,.,,-.+.)k )

' -BuFf1 R_ ; C3ffi -BriGS2

A n

F2pt G2p+

c+-s ; q-s

FG_, _2 FGfJ, _2
c+=- ; c,=

+(P,-P+) +(+,-P:)

All

4

(175a)

and

(175b)

The axial compressive load N*, which corresponds to the load at which the character

of the roots to the characteristic equation, eq. (152), changes from the roots being

complex conjugates to the roots being repeating pure imaginary roots, has been shown

to correspond to the collapse load of the cylinder by Booton (ref. 2). Since

application of a compressive axial load corresponding to the collapse load would cause

catastrophic failure of the cylinder, the analyses and results discussed in the remainder

of this work will focus only on compressive axial loads in the range 0, N > N'.
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E. Preloading Response Due to Thermal Effects

Composite cylinders are usually fabricated on a male mandrel and are consolidated

at an elevated temperature. After consolidation, the temperature is lowered to ambient

temperature and the male mandrel is removed from the cured cylinder. If the fabrication

and consolidation are assumed to be axisymmetric, the cured shape of the cylinder can

be determined using the solutions from the previous sections.

Since there are no loads applied to the cylinder after the mandrel is removed, N is

set equal to zero, as is S, and the response is given by eq. (166). Also, the roots are

given by eqs. (158) and (157). Note that the roots are only functions of the material

properties and cylinder geometry, since N is set equal to zero. Therefore, the _ of

the deformed cylinder is a function of the material properties and geometry only. The

particular solution, eq. (150), which is a function of the material properties, cylinder

geometry, and the temperature change, governs the radial deformation of the cylinder

away from the ends.

Since the boundaries of the cylinder are unrestrained after the mandrel is removed,

the appropriate boundary conditions for this case are the lubricated boundary conditions,

eq. (146), with N set equal to zero.

In summary, from the material properties and geometry of the cylinder, the root parts

_t and [3 of eq. (166) are known. By enforcing the lubricated end boundary condition,

the constants F and G of eq. (166) can be solved using eqs. (146). From the material

properties, cylinder geometry, and temperature change, the particular solution, eq. (150),

with N set equal to zero, is known. Therefore, the deformed shape wO(x) can be
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calculated.

F. Numerical Results for the Case of Thermally-Induced Preloading

Relations between u"(x) v °(x) w °(x) and x for three 16 layer cylinders are
H ' H ' H L

presented in Fig. 11, Fig. 12, and Fig. 13, respectively. These cylinders have stacking

sequences of [+45/-45/0z_, [+45/-45/0Z]4T, and [0J-45/+4514T, a length to radius

ratio, L/R, of 3 and radius to thickness ratio, R/H, of 125. The value of these

parameters are representative of thin, moderately long cylinders. The results are felt to

be valid for any cylinder with L/R _ 2 and R/H > 100. Specific dimensions used

herein can be determined knowing a single layer of fiber reinforced material is 0.005 in.

thick. The layer material properties used in the calculations are given in Table I.

Table I. Layer Material Properties

El

(Msi)

20.

(Msi)

1.3

GI2 PI2 layer

thickness,

(Msi) h (in.)

1.03 .3 .005

0¢ 1

(in./in.)/*F

-.167 x 10 "6

Ot 2

(in./in.)/*F

15.6 x 10 "_

The first stacking sequence represents an often-used slightly orthotropic lay-up, while

the second and third stacking sequences represent two unsymmetric variants of the first

one. If unsymmetric laminates are to gain favor, slight deviations from symmetry, as

with the second laminates, are most likely to initially be used. The laminate properties

and thermally-induced equivalent stress resultants with ATf-280*F for these three

cylinders are given in Table 1I.
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Table II. Laminate Properties and Thermally-Induced Stress Resultants for

[+45/-45/0z]2s, [ +45/"45/0214T, and [02/-45/+4514T Cylinders,
AT =-280°F.

Laminate Property [ +45/-45/0212s [+45/'45/0214T

All 0b/in) 1.068 x 106 1.068 x 106

AI2 0b/in) .1966 x 106 .1966 x 106

A22 0b/in) .3156 x 106 .3156 x l&

A_ 0b/in) .2476 x 106 .2476 x 106

[02/--45/--F4514 T

1.068 x 10_

.1966 x l&

.3156 x 10 _

.2476 x 106

Btt 0b-in/in) 0 2,707. -2707.

B12 0b-in/in) 0 -826.0 826.0

B_6 fib-in/in) 0 -470.3 470.3

D11 fib-in2/in) 461.3 569.6 569.6

N_ r Ob/in) -160.2 -160.2 -160.2

No T fib/in) -357.1 -357.1 -357.1

.4921Mx T fib-in/in) -.4921

Fig. U.
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Fig. 13.

o

-0.140

--0.144

........................................................_.,_r...._,.- ..-0.146 '-___._ ; 2L .... _ ............... _,

---- T -- T ........ ='_.- - -_-_
]_ -0,148 .............. ; ............... :.................................... ":w,,,_'. _ • -,

-0.1 50 ! .....................................
o [+45/-45/0z)_ : ; '
0 [+ 45/--45/0'214T ......................................

-0.152 t • [02/-45/+451,I.T i :

-0.1 54 / , t , i , I , I ,
0.0 0.1 0.2 0.3 0.4 0.5

x/L

Dimensionless Radial Mid-su_ace Displacement of Cylinders with

Lubricated Boundary Conditions, N=0, ATf-280°F.

Fig. 11 reveals that the axial displacement of the cylinder mid-surface for all three

cylinders is essentially a linear function of x and that the magnitudes of the responses for

these cylinders is the same. Since the effective axial coefficient of thermal expansion of

the cylinders is negative, they respond to the temperature change of AT=-280°F by

expanding axially.

By examination of Fig, 12 and Fig. 13, it is seen that for the symmetric cylinder, the

83



tangentialdisplacementsof the mid-surface are zero over the entire cylinder length, and

radial displacements of the mid-surface of the symmetric cylinder are constant.

Comparing the results of the unsymmetric [+45/-45/0214T cylinder to the results of

the [02/-45/+4514T cylinder, it is seen that the tangential and radial displacements vary

along the half-length of the cylinders, particularly toward the cylinders' ends. The ends

of the unsymmetric cylinders curl radially and twist, producing a boundary layer effect.

The direction of the radial curl is a function of the sign of the thermally induced moment

M r, resulting from the opposite stacking sequences of the cylinders. The [+45/-45/0214r

cylinder curls outward, while the [02/-45/+4514T cylinder curls inward. Fig. 12

illustrates that both unsymmetric cylinders twist in the same direction due to the

thermally-induced preloading, although the [02/-45/+4514r cylinder exhibits a slightly

larger tangential displacement at the end. It is important to realize that the study of

unsymmetrically laminated cylinders would not be correct without including this

thermally-induced deformation due to cooling from the consolidation temperature.

G. Cylinder Response Due to Thermally-Induced Preloading Effects and a

Compressive Axial Lead

In order to correftly model the response of the cylinder due to thermal preloading

effects and a compressive axial end load, the thermally-induced preloading deformation

at the end of the cylinder must be taken into account when enforcing the end conditions

under axial load. Since the cylinder deforms due to cooling from consolidation

temperature to ambient temperature, any fucture used to apply the axial end load to the
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thermally deformed cylinder must take into account the thermally-induced tangential and

radial deformation and slope at the end of the cylinder before loading. This impacts the

specification of the simply supported and clamped boundary conditions, eq. (147) and

(148), respectively. Stated in another way, simply supported or clamped end conditions

would resist any tangential and radial end displacements relative to the thermally-induced

preloading value, and clamped end conditions would also resist rotation of the ends

relative to the thermally-induced preloading value. As observed in the previous section,

under thermally-induced preloading effects, for unsymmetric laminates, the radius at the

end of the cylinder will most likely be different from the radius of the cylinder away

from the ends. Therefore, the axial load N would be applied eccentrically relative to

the mid-length of the cylinder. This could have an influence on the response of the

cylinder near the ends.

Since the boundary conditions associated with the thermal-induced preloading effects

are those of lubricated ends, it follows that the thermally-induced torsional load, St, is

zero. Therefore, the tangential displacement v ° at the end of the cylinder after

thermally-induced preloading effects is given by eq. (142) with $ equal to zero, i.e.,

-
(176)

Under thermally-induced preloading effects and axial load, the simply supported and

damped boundary conditions are:
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1) Simply Supported end (at x= +L/2):

B,, [_ d_o . s(._L / _ B,,d_;I
_°l_"-__ _-_-._ a,,_ 2) _--d_ I,.._"

2

(177a)

,,,'1 :,,';It. t. ,X=+ Xm+

2 2
(177b)

and

2

- B"(N÷_I÷_/--o
All

(177c)

2) Clamped end (at x= +L/2):

,..__ A,,t 2) _ a_I,..__'
2 2

(178a)

°L..__: w;I,..__,
2 2

(178b)

and

dx Ix.._t
2 2

(178c)

where the subscript T denotes the value of the response due to thermally-induced

preloading effects.

Obviously, since w°(x) and its first derivative are involved in the boundary

conditions, the unknown constants F and G in the solutions for w°(x), eqs. (166),

(167), and (168), can be solved for. Also, these two boundary conditions require that
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a third unknown, the torsional load S be found. Therefore, three unknowns, F, G, and

$, must be solved for using eqs. (177) and (178).

It is worth noting that in the case of clamped boundary conditions, the specification
O

dw °
of v °, eq. (178a), and specification of ---_, eq. (178e), both involve dwrdx evaluated

at x=+L/2. In fact, ifeq. (178e) is multiplied by mBt_ and the result is subtracted from
Ata

eq. (178a), the solution

S = 0 (179)

is found. Therefore, eq. (178a) can now be eliminated from the system of equations

used to solve for F and G, leaving eq. (178b) and (178e) as the system of equations to

be solved. The physical interpretation of this result is that for these particular

unsymmetrieally laminated cylinders (which result in certain B matrix terms not being

zero), axial compression with clamped boundary conditions does not induce a torsional

load $, while simple support boundary conditions will induce a nonzero $. This is a

dw*

result of the definition of the tangential displacement v °(x) involving the slope --_ and

the value of the thermally-induced preloading torsional load, St, being equal to zero.

If the boundary conditions during the coaling from consolidation temperature to ambient

temperature were other than lubricated end conditions, i.e., if the ends were simply

supported or clamped during the cooling procedure, a nonzero value for Sr would result

for unsymmetrieally laminated cylinders, and imposition of clamped boundary conditions

during axial compression would result in an induced torsional load $.
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H. Numerical Results for the Case of Thermally-Induced Preloading Effects and a

Compressive Axial Load

Dimensionless axial, tangential, and radial displacements for cylinders with

[+45/-45/0212s, [+45/-45/0214r, and [02/-45/+4514T stacking sequences, with simply

supported and clamped end conditions and varying load N, are presented in Fig. 14

through Fig. 31. The figures illustrate the variation of these displacements along the

dimensionless half-length of the cylinders. The three families of figures illustrating the

axial, tangential, and radial mid-surface displacement have common vertical scales for

ease of comparison within these families.

The two axial load levels investigated axe given by fractions of the load N', i.e.,

for N=10% N* and N=90% N*. The quantity N* is independent of boundary conditions

and thermal preloading. Recall that the quantity N" dictated the form of the roots of the

characteristic equation, eq. (152). The values of N* for the three cylinders are:

[+45/-45/0212s • -2271 Ib/in,

[+45/-45/0_T • -2241 Ib/in,

[02/-45/+4514T : -2771 Ib/in.

1. Simply Sup__rted Boundary_ Conditions with Thermally-Induced Preloadin_ Effwt._

and a Comoressive Axial Load

The dimensionless mid-surface displacements as a function of distance along the half

length of these cylinders with simply supported ends are presented in Fig. 14 through

Fig. 16 for N=10% N*, and Fig. 17 through Fig. 19 for Nffi90% N'. Comparison of
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the results relative to the two load levels exhibits the change in the magnitude and

of the responses. The difference in the _ of the responses is a result of the nonlinear

nature of the governing equations. In particular, the length of the boundary layer

increases with increasingly compressive axial load.

Fig. 19 illustrates that, at comparable load levels, the maximum value of the radial

response of the [+45/-45/0z_r cylinder is significantly larger than that of the

[02/'45/+4514T cylinder. Note that the actual load N = 90%N* on the [+45/-45/0_.r

cylinder has a smaller magnitude than the load on the [0J-45/+4514T cylinder, since the

load N* is larger in magnitude for the [02/-45/+4514T cylinder and each cylinder in these

figures is loaded axially based on the quantity N/N*, with N ° being different for each

cylinder.

The tangential displacement v*(x) is given by eq. (142). Note that the magnitude of

A_ and the magnitude of BI_ (presented in Table II) for the [+45/-45/0_4T and

[02/-45/+45]_r cylinders are identical, while the sign of Bte for these two cylinders are

opposite. Therefore, the difference in the magnitude of the tangential displacement,

presented in Fig. 15 and Fig. 18, is a result of the difference in the magnitude of dw__*
dr

for these cylinders, while the difference in the sign of v°(x) is a result of the difference

in the sign of B16 for these cylinders.

As illustrated in Fig. 14 and Fig.

the [02/--45/+45]_r cylinder are larger

the [+45/-45/0z14r and [+45/-45/0d2s

inplane stiffnesses, as dictated by Al_,

17, the magnitudes of the axial displacements of

than the magnitudes of the axial displacements of

cylinders. Since all three cylinders have identical

AL_, At,, and A_, and the fact that these figures
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represent displacement data based on dimensionless loads N/N °, this difference in

magnitude is a consequence of the larger magnitude of N" for the [02/-45/+4514-r

cylinder.

Fig. 14.
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Fig. 16.
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lr_. 19.

0.5

0.4

-,- 0.3

0.1

0.0

-0.1

-0.2
0.0 0.1 0.2 0.3 0.4 0.5

x/t

Dimensionless Radial Mid-surface Displacement of Cylinders with
Simply Supported Ends, N=90%N', _T=-280°F.

2. Clamped Boundary Conditions with Thermally-Induced Preloading Effects and a

Compressive Axial Load

Since simply supported boundary conditions are difficult, if not impractical, to obtain

in reality, and since the displacements of unsymmetrically laminated cylinders are large

and rapidly changing near the ends of the cylinder, it is legitimate to ask if the responses

of cylinders with clamped ends would be comparatively diminished.

The dimensionless mid-surface displacements as a function of distance along the half

length of cylinders with clamped ends are presented in Fig. 20 through Fig. 22 for

N=10% N*, and Fig. 23 through Fig. 25 for N=90% N'.

As was the case with simply supported ends, it is observed that the axial displacement

is largest for the [02/-.45/+4514r cylinder. Again, this can be attributed to the fact that

the value of the axial load N is significantly larger for this cylinder, relative to the other

two, while the inplane stiffnesses of all throe cylinders are identical.

From Fig. 24 and Fig. 25, it is apparent that the maximum values of the tangential
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and radial displacements of the [02/-45/+4514T cylinder are larger than those of the

[+45/-45/0Z]4T cylinder. This is converse to the results of the previous section, Fig. 18

and Fig. 19, where simply supported boundary conditions were imposed. In comparing

the simply supported and clamped boundary condition results for N = 90%N*, it is also

evident that the range of values for the tangential and radial response of the

[ + 45/'45/0Z]4T and [02/-45/+ 45141"cylinders with simply supported boundary conditions

are broader than the range of values of these responses for the clamped boundary

conditions.

Again, from Fig. 22 and Fig. 25, it can be observed that the length of the boundary

layer increases with increasingly compressive axial load.
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_, Effect of Neglecting to Include the Thermally-Induced Preloading Effects

In Fig. 26 through Fig. 31, the dimensionless axial, tangential, and radial mid-surface

displacements are presented for simply supported cylinders, subjected to the same axial

loads as before, but neglecting to include the thermally-induced preloading effects.

Comparing the case of simply supported cylinders with thermal preloading and axial

load to the case of axial load only for N=90% N', i.e., Fig. 17 through Fig. 19 and
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Fig. 29 through Fig. 31, it is evident that neglectingto include the thermally-induced

preloadingeffectshasa measurableeffecton thepredictedradial displacementresponse

of the cylinders. There is not much difference in the axial or tangential displacement

response. The tangential and radial responses at the mid-length of the cylinder differ

between these two cases since the particular solution depends on the thermally-induced

Fig. 32 and Fig. 33 represent the displacement responses for a [08/908}r cylinder

using the same material properties as above. These figures illustrate the exaggerated

effect of neglecting to include the thermally-induced preloading effects in the solution for

the axially loaded case. There is a large difference between the results. This particular

case was studied in ref. 1 without including thermal effects. Results such as shown in

Fig. 32 and Fig. 33 certainly provide motivation to recompute the results of ref. 1 with

thermal effects.
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In the next chapter, the effects of unsymmetric stacking sequence and thermally-

induced preloading on the intralaminar stress components will be investigated. The

solutions to the axisymmetric problem presented thus far will be employed to compute

the intralaminar stress components in the individual layers of cylinders.
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IV. CALCULATION OF INTRALAMINAR STRESSES

In this chapter the equations used to calculate the principal material system stresses

ou, 022, and ¢t2 within the wall of the [+45/-45/0z]2s , [+45/-45/0Z]4T , and

[02/-45/+4514T cylinders will be presented, and numerical results with thermally-induced

preloading effects and compressive axial load will be illustrated. The principal material

system stress components on, 022 , and 'c12 will be referred to as the principal material

system intralaminar stresses. These stress components can be calculated from the

principal material system strains, ¢_, e,,, and "f_2, through constitutive relations. The

other three stress components, z_, _e,, and o,, are referred to as interlaminar stresses

and will be discussed in a later chapter.

A. Equations Describing Intralaminar Stresses

Under the axisymmetric assumption of the previous chapter, the intralaminar strains

cx, ee, and Y,0, in the cylinder coordinate system x-0-r are given by eq. (12) and eq.

(128), namely,

g= = gx ÷ Zl_

0 0

Yxo : Yxo + ZV,.xo,

(12)
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and

_ = dw 0 o =o
W ° C_ °o _ du ° l no2. o_ o _

dp;
=0.

(128)

In the previous chapter closed-form solutions for u °(x), v°(x), and w°(x) were

presented. Therefore, the derivatives of these functions with respect to x are analytically

obtainable, and the expressions in eq. (128) are known for a given temperature change,

axial load, and boundary conditions.

The principal material strains can be calculated from the strains %, %, and V_ by

coordinate transformation from the x-0-z coordinate system to the 1-2-3 principal material

coordinate system for each layer. These transformations are given by

[sinOcosO -sinOcosO cos20-sin2O]

(180)

where 0 is the angle measured from the x axis to the fiber direction (the 1-axis) of a

given layer.

Once the total strains in the 1-2-3 coordinate system are known, the mechanical

strains arc obtained by subtracting the free thermal strains,

(181)
r AT

el1 = _(ll

T
e. = _AT,
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from the total strainsgivenby eq. (180). By definition, anorthotropic layer doesnot

havea free thermalshearingstrain. Therefore,the mechanicalstrainsaregiven by

M
811 == 811 = (IIi AT)

M
822 = e22 - a22 A T,

M
¥12 = Yn"

(182)

From these mechanical strains, the principal material system intralaminar stresses

on, 022, and _12 can be calculated using the reduced stiffness matrix for each layer,

i.e.,

t'tI'"
_,2 0 0 g_ jLy,2

The reduced stiffnesses are

(183)

e,
_1' - )

1 - v12v21

V,2 E 2

Q12 - 1 -v12v21 '

Q22-
1 -v 12v21

(266= 0,2,

(184)

where El, iS2, v=, and O12 are known for a given orthotropic layer and v21 is

calculated by
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V21
E l

(185)

The values for the layer material properties used in these analyses were given in the

previous chapter in Table I.

B. Numerical Results for Intralaminar Stresses: Case of Thermally-Induced

Preloading Effects and a Compressive Axial Load with Clamped Boundary

Conditions

Since clamped boundary conditions more closely represent actual applications of

cylinders, the remainder of the analyses will focus on clamped boundary conditions.

Again, the three cylinders of interest have a length to radius ratio of 3, a radius to

thickness ratio of 125, and have [+45/-45/0z]2s , [+45/-45/0z_r , and [02/-45/+4514r

stacking sequences. The thermal preloading effects are due to a temperature change,

AT, equal to -280"F.

The numerical results to be presented in this chapter are principal material system

intralaminar stresses in various groups of layers within the cylinder wall. The stresses

are normalized by the quantity (NI 83, where N is the compressive axial load and H

is the wall thickness, 0.080 in. The quantity (IV/1-1) represents the average axial stress

in the cylinder wall. The stress components are reported at the mid-thickness location

of each layer. The two axial load levels investigated are given by fractions of the load

N', i.e., N= IO_N" and N=90%N*.

For each cylinder and load ease, six figures are presented. There are two figures for
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each of the mid-layer principal material system intralaminar stress components, ou, 022 ,

and 1:12; one figure for the 0 ° layers and one figure for the +45 ° layers. Due to the

difference in magnitude of the respective stress components in these two groups of

layers, two figures can be used. For each cylinder and load case the vertical scale of

each of the six respective figures is the same for comparative purposes. Since the

magnitudes of the stress components are largest near the ends of the cylinders, the

horizontal scale includes only the portion of the half-length of the cylinder from x/L=0.3

to x/L=0.5. Where possible, the layer number in the stacking sequence is printed next

to the respective layer's stress component relation in the figures. Where the relations are

too closely spaced in the figures, the direction of increasing layer numbering in the

stacking sequence is shown with arrows. Recall, layer no. 1 is at the inner most radial

position.

The first three sets of figures, Fig. 34 through Fig. 36, represent principal material

system intralaminar stress results for the three cylinders subjected to a compressive axial

load of N=I0%N °, including thermally-induced preloading effects, i.e., with a

temperature change, AT, equal to -280"F. The next three sets of figures, Fig. 37

through Fig. 39, represent principal intralaminar stress results for the three cylinders

subjected to a compressive axial load of N=90%N', including thermally-induced

preloading effects. The last set of figures, Fig. 40, represent principal intralaminar stress

results for the [+45/-45/0Z_T cylinder subjected to a compressive axial load of

N = 90%N', _ thermally-induced preloading effects, i.e., with a temperature

change, AT, equal to 0 °.
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C. Discussion of Intralaminar Stress Results

For the low load level for the [+45/-45/0z]2s laminate, Fig. 34, the fiber-direction

stresses, o11, are higher in the ±45 ° layers than the 0* layers. Since the 0 ° layers are

aligned with the applied load and thus will directly bear the load, it is surprising that the

fiber-direction stresses are not higher in the 00 layers. This anomaly is no doubt due to

the thermally-induced effects dominating at this low load level. This will be seen

shortly. The intralaminar stresses perpendicular to the fibers, o_, are about the same

for the 0 ° layers as for the +45 ° layers. The shear stresses are small, being zero in the

0 ° layers and equal and opposite in the +45 ° layers.

For the low load level, the stresses in the [+45/-45/Oj4T laminate, Fig. 35, are

similar in magnitude and spatial distribution to the stresses in the symmetric laminate.

The primary difference between the unsymmetric laminate and the symmetric laminate

is a minor level of shear stress in the 0 ° layers of the unsymmetric laminate.

The stress levels at the low load level in the [02/-45/+4514T laminate, Fig. 36, are

similar to the stresses in the [+45/-45/0zips and [+45/-45/0z_T laminates. The fiber-

direction stresses in the 45 ° layers, at the end of the cylinder, are somewhat lower for

the [02/-45/+4514T laminate than for the other two laminates. The compressive stresses

perpendicular to the fibers, oz2, are not as high as for the [02/-45/+4514T laminate as for

the other two. The same is true for the shear stresses in the +45 ° layers, though the

difference in stress levels for one laminate to the other two is of little consequence for

this low load level.

For the high load level and the symmetrically laminated cylinder, Fig_ 37, the fiber-
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direction stress levels in the 0 ° layers, the load bearing layers, are higher than in the

_+45 ° layers. Apparently, at the low load level, Fig. 34a and Fig. 34b, thermal effects

do dominate but at the higher load level, they are in the background. This will be

discussed more shortly.

The stress levels in the two unsymmetric laminates at the high load are quite similar

to the stress levels in the symmetric laminate at that load level. The intralaminar stresses

perpendicular to the fiber-direction, oz2 , are compressive, thus virtually eliminating the

potential for micro-cracking due to this stress component. The shear stresses in the

_+45 ° layers for the three laminates could lead to matrix cracking, but they are low, even

for this high load level.

To provide an indication of the magnitude of the thermatly-induced intralaminar

stresses, the stresses in the [+45/-45/02141- cylinder with the high load level but not

including thermal effects are shown in Fig. 40. These should be compared directly with

Fig. 38, the same laminate and same load level, but with thermal effects included. All

stresses except the fiber-direction stress in the 0 ° layers shows some influence of the

thermal effects. By comparing Fig. 38c and Fig. 38d with Fig. 40c and Fig. 40d, it

appears as though the intralaminar stresses perpendicular to the fibers, o,,, due to

thermal effects, are compressive. Also, when comparing Fig. 38f with Fig. 40f, it can

be concluded that thermal effects relieve somewhat the intralaminar stress in the _+45 °

layers.

It should be noted that the solutions for the intralaminar stresses obtained to this point

can be used directly in a failure criterion associated with classical lamination theory
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(CLT). However, since the failure of a cylinder on a material failure basis also consists

of determining whether delamination occurs for a given load case, a method for

determining the interlaminar stresses is needed.

In the following chapters, the analyses performed thus far will be used to derive

solutions for the interlaminar stress components within the cylinder wall.
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V. DERIVATION OF THE THREE-DIMENSIONAL

EQUILIBRIUM EQUATIONS IN CYLINDRICAL COORDINATES

In the previous chapters, the assumptions of thin shell theory and axisymmetry have

been employed in order to obtain closed-form solutions for the response of composite

cylinders. This method has provided relations for the displacements and intralaminar

strains and stresses as functions of the axial and radial coordinates.

As a practical matter, it is important not to ignore the existence of the stresses at the

layer-to-layer interfaces of the cylinder. These stress components are the shear stress

components x_ and "%,, and the normal stress %. These three stresses will be referred

to as interlaminar stresses. If acceptable levels for the interlaminar stresses are

exceeded, delamination of the layers can result, leading to a structural failure. The

theory presented thus far incorporates classical lamination theory (CLT) which assumes

a state of plane stress, i.e., that the interlaminar stresses can be ignored. Therefore, a

different set of governing equations is required in order to calculate the interlaminar

stresses.

The aim of the remainder of this work is to calculate the interlaminar stresses by

using the solutions for the intralaminar stresses derived in the previous chapters. The

procedure used to this end consists of deriving the three-dimensional equilibrium

equations and boundary conditions for a linear elastic body undergoing large

deformations, simplifying these equations in accord with the pertinent assumptions of the

previous chapters, and solving these equations using the solutions previously obtained for
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the intralaminar stresses.

In the following section, the three-dimensional equilibrium equations and boundary

conditions will be derived for the cylindrical coordinate system used thus far in the

analyses. In a subsequent section, the displacement gradients and rotations will be

derived for the cylindrical coordinate system. The equilibrium equations and boundary

conditions will then be recast in a form which explicitly illustrates the terms which

depend on the displacement gradients and rotations, then, the equations can be simplified

in a rational manner based on the magnitude of the deformations and rotations at a point.

In order to bring the three dimensional equilibrium equations, boundary conditions, and

the displacement gradients and rotations

intralaminar stresses, these relations will

into accord with the solutions for the

be simplified under the assumptions of

axisymmetry. In addition, the displacement gradients and rotations will be simplified

further under the assumption of Kirehhoff, i.e., that the displacements vary linearly

through the thickness of each layer. The simplified relations for the displacement

gradients and rotations for the three cylinders of the previous analyses will be used to

quantify the relative magnitudes of the coefficients of the stress components appearing

in the three-dimensional equilibrium equations. These results will be used to further

simplify the equilibrium equations. Finally, in the next chapter, these simplified

equilibrium equations will be solved for the interlaminar stresses and results for the three

cylinders will be presented. The method of solution will incorporate the solutions of the

previous chapter for the intralaminar stresses, in the manner described by Pagano

(ref. 3).
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A. Transformation of the Three-Dimensional Equations of a Linear Elastic Body

in Rectangular Coordinates to Cylindrical Coordinates

The method of derivation of the three-dimensional equilibrium equations in cylindrical

coordinates will begin with the derivation of the tensor form of the equilibrium equations

in rectangular coordinates. These equations will then be transposed into the cylindrical

coordinate system by methods of tensor analysis.

The total potential energy (ref. 4) for a linear elastic body in rectangular

coordinates is

O$ 2

(186)

If Green's Strain tensor,

lu
eq = _( ,.j + uj., * up.,up.j) (187)

is incorporated into eq. (186), and the first variation is taken with respect to the

displacement tensor ui, the Euler equations and variationaUy consistent natural boundary

conditions are

and

(*o ÷ *,,%)., ÷/J = o in v, (188a)

tj. t,=j_.= ij ons,

OR uj is specified on S=,

(188b)

where x o are the Kirehhoff stress tensor components, uj are the displacement vector

components, fj are the components of the body force vector, ij are the tractions specified
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on the surface S2 of the total boundary S, and V is the volume containing the body. As

essential boundary conditions, the displacements are assumed to he zero over the surface

S1 -S-$2, i.e.,

uj = 0 on S 1 . (188c)

The tensor tj is defined as

tj = "_o n_ , (189)

which acts over the surface $2, where ni are the components of the surface normal

vector. Therefore, from the definition of the principal of minimum total potential

energy, equations (188) represent the equilibrium equations and variationally consistent

boundary conditions governing the three-dimensional response of a linear elastic body

undergoing large deformations in a rectangular coordinate system. It should be noted

that these are tensor equations, therefore, they can be transposed into any specific

curvilinear coordinates in Euclidean space through the rules of tensor analysis. Note

also, that the covariant and contravariant components of the tensor quantities in these

equations are identical, since the coordinate system is rectangular. In the following,

these equations will be transposed into curvilinear coordinates, and the distinction

between covariant and contravariant tensor components must be observed.

Eringen (ref. 5) notes that a tensor equation in rectangular coordinates can be

resolved into curvilinear coordinates by enforcing the following two rules: "(a) The

partial differentiation symbol (,) must be replac_ with covariant differentiation ([), and

(b) The repeated indices must be on diagonal positions." Applying these rules to eqs.
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(188a) and (188b) results in a different form of the tensor equations, i.e.,

(otj + o_PuJlp)l,÷f_ = 0 m v, (190a)

and t i + tPullp = 21 oil S2,

where covariant differentiation of contravariant tensors is now involved.

(190b)

The tensor

calculus involved in carrying out these differentiations depends on the base vectors gk,

the metric tensor gu, and the Ckrismffel symbols of the second kind i related to the

transformation from rectangular to cylindrical coordinates. For the coordinate system

used so far in the analysis, i.e., the coordinate system presented in Fig. 1, the base

vectors are m

_=il

(191)

where i-i,_, and i'3are the unit base vectors of the global rectangular coordinate

system. Therefore, the metric tensor is

(192)118_11-- ,
0

and the nonzero Christoffel symbols of the second kind are

m )

23 • 3 (193)
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Carrying out the differentiation in eq. (190a), according to the rules of covariant

differentiation results in a tensor equation involving only partial derivatives, namely,

Sii linj linj } lifj

+ - Uq + +
T'/uj., p lifJ {i/J )

UAp

-- _ .iTJP _r -- TlPl4r, i + TiP _# - l_rop

lPiJ jr " - u;' + fs = O .

The underscore of the superscripts of gll signify that the summation is suspended.

(194)

In

the following, the components of the body force, fJ, are assumed to be zero.

By expanding the tensor equation, eq. (194), for j = 1, substituting the values of the

metric tensor and Christoffel symbols derived above, collecting terms, and simplifying,

the fn'st equilibrium equation is

,[,"(i÷.,.,)÷_,_.,_÷_"",A.,
•.[e'(,..,.0"_=",_÷==",_].,

+[r(T'a(1+u,.,)+T"u,a+," u,.s)].' =0.

(195a)
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Likewise, for j =2,

4-

TII U2,1

:lu2a

,t"31//

2,1

4- r,_ 21 U3,1

+ ,_12(f2 + IL/.,2 + ?'143) + f13U2,3

+ :(r 1-,,,_ +r,,,) -, :"2_

+ T32( !'2 +//2,2 +/'//3) + 1733//2,3

4-:(ru,,2-//2)4-:(r4-r//,._)_-O,

_ _I:141]
r ,I

- 1.:3 u2]
r ,2

_ !:3//2]
f ,3

(195b)

and for j =3,

r

4. r

. (u3,3,1 ,_12 _ 1

[(:' 1) )1+ r 143,1 + ._32 _ //3,3)3,2r _ 4-_'_(1+
,3

__,:. (,,__,)_-o.r

(195c)

It is important to realize that these equations involve tensor components _:JJand u i and

not the physical components of the stresses and displacements. The physical components

of stress will be denoted by a u as given by

ou = _.t._)'_ u m "r_J= _gY-_gJ-J-oq ,
(196)

where

1 (197)

for orthogonal coordinate systems. Since the cylindrical coordinate system in this
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analysisis orthogonal,thenby eqs.(192) and (197),

&!! = 1 = g33 , and g_22 - 1
r2 (198)

The physical components of the displacement tensor u_ are _ as given by

_'_-- g_-qu_ or u_= g_.q _.
(199)

Using the above relations to obtain the physical components of the stress and

displacement tensors, and

(a) substituting x for the superscript 1, 0 for 2, and r for 3 in eqs. (195),

(b) substituting u for u'l, v for _, and w for u3 , and

(c) replacing the partial derivative notation according to O(_._))_ ( ),1 ,
Ox

a(---A)-( ).2 and a(---A)=-().3,
aO ' Or

a more standard form of the equilibrium equations can be obtained, namely,

+ _[(1 "--_) r'°+ ---raOlauo's " 0u'_° ,]

+ _r 1+ _r +__ + _o r
Or rO0 Or

=0,

(200a)
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and

+ + 1 +--_ + OOO + _Or
r_

+ -_'°_v'r"+ -r1(_ -v)ooO+(l+-_r )t °" =0,

(+ --r ¢xr + _ :e, + 1+ o"
ar

- _ - 1 +--r_ + °°° - _l:er = 0 .

(200b)

(Z00c)

In the last step, symmetry of the stress tensor was used in order to emphasize that six

stress components, not nine, are involved. The fact that component designation of the

stresses are superscripts is an artifact of the contravariant tensor of eqs. (195). However,

since the stress components in eqs. (200) are physical components, they are not tensor

components, and therefore, the terms covariant and contravariant have no meaning in this

context. Hence, the difference between a superscript and subscript notation for the stress

components is superficial.

In a similar manner to that used for the equilibrium equations, the natural boundary

condition equation, eq. (190b), can be transposed into the cylindrical coordinate system.

The result, in the physical components of stress and displacement, is
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( 8u_ zx 1 8u xxe 8u ,]

+ 1 +_)m- + ---raO + _'eJ'e

+ 1+ _ + + °r "r = tx onS 2
r_

OR u isspecifiedon S2

(201a)

and

+[_,ze+(x+l_' oee _ ']

+ ,o, + on S2

OR v isspecifiedon S2 ,

(201b)

and

+[__._r+_lr(.__ )e, +(l+_)Orr]_.,=_" onS 2

OR w is specified on S 2 ,

(201c)

where the bar over the surface tractions t =, [ e, and _', and surface normals a'x, n e,

and E,, in eqs. (201) signify that these are the physical components of these quantities.

In summary, the equilibrium equations for the three-dimensional stress state of a body

in cylindrical coordinates undergoing large deformation are three coupled, nonlinear
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partial differential equations.

nonlinear equations.

The boundary condition relations are also coupled,

B. Derivation of the Displacement Gradients and Rotation Components of the F'mite

Strain Tensor in Cylindrical Coordinates

The equilibrium equations and boundary conditions just presented will later be

simplified by rewriting them such that the coefficients of the stress components are cast

in a form which reflects the contributions of the displacement gradients and rotations, in

accord with the method presented by Novozhilov (ref. 6). This method enables

one to simplify the equilibrium equations in a rational manner by eliminating certain

terms based on the relative magnitudes of the products of the displacement gradients

and/or rotations and stress components.

First, the displacement gradients and rotations will be derived for the cylindrical

coordinate system used thus far in the analyses. Eringen (Ref. 5) gives the following

definitions for the displacement gradients, or infinitesimal strains, and the rotations,

respectively, as

where

1 (ut[ s + u_]t) ,e_ =

1 (202a)

utlz'utJ- t u..
{202b)

If eq. (202b) is substituted into eq. (202a), the symmetry of the Christoffel symbols of

the second kind is recognized, and the result is expanded, the following expressions for
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the displacement gradient and rotations result

_kl = Uk.t + Ut.k - 2 It m

k

• a = eu for allk,l;

1 U"'-- i( '.'- "'.') '

ra = -rkt fork,l,

tit = 0 for k=O.

(203)

These definitions can be expressed in terms of their physical components by using the

relation

The displacements appearing in eq. (203) may also be expressed in terms of their

physical components, as given by eq. (199). Therefore, the physical eomponents of the

displacement gradients and rotations in terms of the physical components of the

displacements, can be shown to be

- - i(!_ -u2.,) _,,eu = ut.l , r_2 = 21,r 1.2 = -

_.I(_.I_ ) - 1

- 1_. -
exs = i( ,,3 +u3,,) ,

-e= - "2.,+ r +.2 r

_'33 = _'3.3 "

r23 = 1_, • +"z,3- r = , (205)
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These relations can be expressed in the terminology of the cylindrical coordinate system

by substituting, as before, the definitions u-=u'l, v----u2 , and w--u3, and writing the

partial differentials using the definitions 0(__)) _=( ),1 , 0(_._))_=( )a ' 0(___))_ ( )2
0x 00 Or

These substitutions result in the following form of the displacement gradient and rotation

definitions:

Ou lau Ov
= -- 2r_e - = - 2exx c2r ' r o_ _ rex'

lOu Ov Ou Ow
- + -- 2 r_, - = -22 exe r aO _ ' Or ¢3x r'x '

0u 0w v Ov 10w
= --+-- 2re, = -+ - -22 ex, Or ax ' r Or r ¢30 r'e '

lOv w
eO0 - +-- '

r¢30 r

0v low v

2co" Or • O0 r

OW

e,, Or

(206)

The displacement gradients and rotations can be combined in order to make

substitution into the equilibrium equations more obvious. Useful combinations of the

displacement gradients and rotations axe:
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au

1 au

r aO - e_° + r_° '

au

ar -e_' + rx, ,

av

ax - e'° - r'° '

1(o%, + w) =eoo ' (207)r a8

av

ar - eor + rot '

aw

_x -e_,-r_, ,

r O0 = %" re" '

aw

ar - e,,

Substituting these combinations into the equilibrium equations, eqs.(200), derived in

the previous section results in

•_[(_÷,.,)o"+(,.,+,.0)÷'÷(,..+,,.)_"]

÷_[(_+,._)÷,÷(,.,• ,,)o,. ÷(,..÷,..),"]

+_a r[(l + t,_)¢*" + (t,. + rz.),'" + (e,, + r,,)o"] = 0

(208a)
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a e
• -_[( =o - r=o)°xx + (1 + coo) _xo ÷ (eo, + i.o,)rx,]

c_ e÷-_[(_o-r_o): ÷(1÷_)o'° +(_°,+ro,):']

+ (3 r [(exo - rxo) 1:x, -_ (1 + eoo)'co' + (Co, + re, ) o"]

+ ('_,- r_,) e° + ('o.- 'o,) o°° + (1 + ',,):' = O.

(208b)

and
ar_[( .- r_,)°'_+(_o,-,o,)e' +(_+_,,)e']

+ -_I_,,-r_,):0÷(,o,-ro,)oO°+(_• _,,):']

+__ar[(_.,-r.,)e'+(eo,-r.,):' +(1+_,,)o"]
ar

- ('.e- r.o) e° - (1 ÷ "oo)o°° - ('e, ÷ '0,):" = O.

(208c)

In a similar manner, the natural boundary condition relations, cqs. (201), can be

rewritten by substituting the combinations of displacement gradients and rotations of eq.

(207), i.e.,

[(1÷,.)_, ÷(,,o÷,.o)e°+(,.,÷,.,)÷,]_.
+ [(1 + ex.)'c"° + (exo + rxo) o ee + (ex, + rxr)'c°'] n'o

(209a)
* [(1 + ex,)x" + (exe + r,o)x °" + (ez, + r,,)o"]g, = [" on $2

OR u is specifiedon S 2 ,

and
[(,_0-,.0):+(_+,,o)e°+(,..+r,.)÷']_.

+ [(e.e- r.e)ee + (I+ eoo)oo° + (eer+ ror),°'],o

+ [(exe-rxo)e" + (I+ eoo)_e'• (co,+ ro,)o"]_, = _e on S2

OR v is specified on S 2

(209b)
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and

[(e,,-r,,,)o"x +(,o,- re,)," +(_+,,,),"]_,

÷(_,,-ro,),"• (_• _,,),,,,]_,
(209c)

= t r onS 2

OR w is specified on S2

To summarize the results of this section, relations between the displacement gradients

and rotations and the partial derivatives appearing in the equilibrium equations for a

cylindrical body undergoing large deformations, i.e., eqs. (200), and the natural

boundary conditions, eqs. (201), have been obtained. These results were substituted into

the equilibrium equations and natural boundary conditions derived in the previous

section. In a subsequent section, the equilibrium equations and natural boundary

conditions will be simplified through a rational method of comparison of the relative

magnitudes of the displacement gradients and rotations in the coefficients of the stresses

in these equations.

C. Specialization of the Displacement Gradients and Rotations Under the

Assumption of Axisymmetry

Since the results of the previous chapters will be used to calculate the portions of the

three-dimensional equilibrium equations just presented, the relations for the displacement

gradients and rotations will be specialized under the assumption of axisymmetric response

and loading, so that they will be in accord with the previous analyses.
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The assumption of axisymmetric response and loading is defined by

a( ) _o, (21o)
ao

( ) being any response quantity. By enforcing this definition, the displacement gradients

and rotations of the previous section, eqs. (206), become

au
- 2rxo = --- = -2

exx igx ' /gx rex '

av au aw

2exe _, 2rx, _ _ 2r,_,

igu igw v /gv
=-+-- = -2r, e,2e=, = -_ +-_- , 2re' r dr

W
+00 =--'

r

av v
2ee' Or r '

aw

err O_r

(211)

D. Simplification of the Axisymmetrie Displacement Gradients and Rotations Under

the Assumptions of Kirchhoff and Donner

In order to incorporate the analyses of the previous chapters, the axisymmetric

displacement gradients and rotations must be simplified by utilizing the relations

describing the displacements from the previous chapters, i.e.,

.(x,e_) =. o(x,e)+z p:(x,e)

v(me_) - vo(me)+ z p_(x,e)
w(mo_) =w*(x,e),

(7)
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and o 0w °
J[

R00 '

(9)

which describe the displacement field in general according to the Kirchhoff assumption,

and eqs. (173a), (173b), and (166) which are the solutions for u °(x), v°(x), andw°(x)

for 0 >N>N', eqs. (174a), (174b), and (167) which are the solutions for u°(x), v°(x),

and w°(x) for N = IV*, and eqs. (175a), (175b), and (168) which are solutions for u °(x),

v°(x), and w°(x) for N< N*. Additionally, the assumption of Donnell was incorporated

in the analyses of the previous chapters, namely, that for thin shells, the variable r can

be replaced by the mean radius R.

Under the conditions imposed by the Kirchhoff and Donnell assumptions, the partial

differentials which make up the axisymmetric displacement gradients and rotations listed

in eq. (211) simplify to

du ° d_ ° dv °
- Z_ 2r_e = - 2re_,

e xx dx dx 2 ' dz

dv ° dw O

2exe- dz ' 2r_, =-2 dx 2r,_,

2ez, = 0 , 2re, - v° -
R 2r'e '

],jO

2 Co, R

_FF _ 0 •

(212)
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Note that under these assumptions,

rxo = -e_, andro,-- -eor. (213)

E. Specialization of the Three-Dimensional Equilibrium Equations and Boundary

Conditions Under the Assumption of Axisymmetry

The analyses previous to this chapter have been made under the assumption of

axisymmetry. Since the solutions obtained in the previous chapters are to be

incorporated into the three-dimensional equations derived previously in this chapter, the

last form of the equilibrium equations and boundary conditions, i.e., eq. (208) and (209),

will be specialized under the assumption of axisymmetry.

Enforcing the conditions for axisymmetry, eq. (210), into the equilibrium equations of

the previous section, i.e., eqs. (200), results in

(214a)

+ -_r[(1 +exx)_' + rx, a"] =0,

r-_[exooxz + (1 + eoo)xx°]

a ,, ,,.),.,]+ -- r [e_oT" +
ar

- rug xO + ¢OrO Oo + Tor = 0 ,

(214b)
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and

o , (2,,)..o ,,,]r _[( - ,,)o '' + +

O
+- _[(-_.)._"+(2,o.)."+o"]Or

- 2%'e'e - (1 +eoe)o°e - 2ee,_ e" =0.

(214c)

in

Enforcing eq. (210) on the natural boundary condition equations, eqs. (201), results

[(1+ e_z)ox_ + r,,¢_'] _,+ [(1 + e::)_ _e

+ [(1 + e,,x)x"r + rx, orriS, = _x on S2 (215a)

+ r_,xe']£e

OR u is specified on S2 ,

and
[(2exo)ox_'

+[(2e_o)e"

+[(2e+o)e"

÷(1.,.),_']_.
+(_+,,)o"]_°

on S 2

OR v is specified on S2

(21513)

and
[(-,.+,.),,.'."+(2,,0,)+.,0+,+,]++

+[I-r+,)e'+(2+0,)°"+'+"]_'+
+[(-,,,),+,+(2+,,),,,+0,,]+,: t, on S 2

OR w is specified on S2

(215c)

F. Simplification of the Equilibrium Equations and Boundary Conditions Through

_tion of Terms of Relatively Small Magnitude

At this point, the three-dimensional equilibrium equations and boundary conditions

have been simplified so that the solutions of the previous chapters can be used to evaluate
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the displacement gradients, rotations, and intralaminar stresses at any point within the

cylinder wall. It should be noted that these quantifies are obtained from CLT. The

solutions of the previous chapter are being used in order to later derive recursive closed-

form relations for the interlaminar stresses at a given point along the length of the

cylinder.

In an attempt to further simplify the equilibrium equations, eqs. (214), and boundary

condition relations, eqs. (215), a study will be conducted of the relative magnitudes of

the terms which are being differentiated in the equilibrium equations. This is similar to

the method implemented by Novozhilov (Ref. 6) to simplify the three-dimensional

equilibrium equations based on the relative magnitude of the displacement gradients and

rotations appearing in these equations in order to rationally obtain equations relevant to

small deformations and small rotations. To be conservative, no assumptions will be

made as to whether a term can be eliminated under a general case of cylinder stacking

sequence, constitutive properties, geometry, boundary condition, or load level.

Otherwise, the study will be conducted based on these parameters as they will occur in

the subsequent calculation of the interlaminar stresses. This precaution is being taken

due to the nonlinear nature of the CLT solutions presented in the previous chapters.

The cylinders to be analyzed in the rest of this work are the same cylinders which

were analyzed in the previous chapter on intralaminar stresses. Likewise, only clamped

boundary conditions will be investigated. Thermally-induced preloading effects with

AT =-280"F will be used in the CLT solutions.

The maximum absolute values of the displacement gradients and rotations for the
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cylinders subjected to compressive axial loads of N=10%N', N=90%N*, and

N = 99%N* are presented in Table III. As can be seen, the displacement gradients and

rotations are considerably smaller than unity.

Table HI. Maximum Values of Displacement Gradients and Rotations

Cylinder
&Load

[±45/0212s
N=10%N"

[02/:!: 4514r
N=10%N"

[±45/02 
N=90%N"

[±45/0214r
N=90%N"

[02/:i: 45hr
N=90%N"

[±45/0212s
N=99%N*

[±45/0214T
N=99%N"

[02/_ 4514 T

N=99%N"

.20.10 .3

.20"10 .3

.27"10 .3

.29"10 .2

.29"10. 2

.35"10. 2

.37"10. 2

.36"10. 2

.44"10. 2

.29"10. 3

.31.10 .3

.31*lff 3

.32"10. 2

•29"10 .2

.38"10. 3

.35"1ff 2

.32"10. 2

.42"10. 2

•12" 10. 2

.11"10. 2

.12"10. 2

.12"10. 2

.11"10 .2

.13"10 .2

.15"10 .2

• 15"10. 2

.21"10. 2

[ rxrlmax

.11"10. 2

.11"10 .2

.18"10 .2

.15"10.'

.14"10.1

.18"10 "l

.21"10 "1

.20"10. l

.25"10. t

le.l 
Ir.l 

0

.40.10 -s

.28"10 -5

0

.28"10.4

.35"104

0

.30-10 .4

.39"104

0

.10"104

.17"10 _

0

.14.10 .5

.18"10. 5

0

.18"10. s

.24"10 .5

1. Simplification of the First Equilibrium Equation

The derivative with respect to x in the first equilibrium equation, eq. (214a), is
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_[(1+ ex,)axx + rx, x_']. (216)

For the range of load levels investigated, the maximum absolute value of the

displacement gradient e_, is less than 10 -2. Therefore, ex_ is small enough relative to

1 such that it can be neglected, and the coefficient of o _x becomes 1. Since the

magnitude of _" is expected to be small relative to the magnitude of o x_, and since the

rotation rx, is small relative to 1 for these load cases, it can be reasonably assumed that

o xx is sufficiently large compared to rzr_" to warrant the elimination of the latter term

from the derivative with respect to x.

The derivative with respect to r in the first equilibrium equation, eq. (214a), is

As with the derivative with respect to x, e,z can be neglected such that the coefficient

of _" is 1. Also, the interlaminar stress component o" is expected to be small relative

to _x,. Therefore, it can reasonably be assumed that _" is sufficiently large compared

to r_, o" to warrant the elimination of the latter from the derivative with respect to r.

In light of these results, the first equilibrium equation becomes

a°zx _ (218)r_+ =0,

which is a linear partial differential equation.

2. Simplification of the Second Eo_uilibrium Equation

The derivative with respect to x in the second equation, eq. (214b), is
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Ore x
0x L eo zx + (1 + eee)_ xe] . (219)

Referring to Table HI, the maximum absolute value of eee for the load levels investigated

is on the order of 103. Therefore, it can be neglected in the coefficient of Txe in the

derivative with respect to x and the coefficient of :or in the derivative with respect to

r. The maximum absolute value of exe is less than 10 4. Therefore, in the derivative

with respect to x, the maximum absolute value of the coefficient of o _ is less than 104

and the coefficient of _xe is 1. The intralaminar stress component _xe is, in general,

one or two orders of magnitude smaller than o xx. Therefore, it can reasonably be

assumed that _e is sufficiently large relative to e_e o xx in the derivative with respect to

x such that the latter term can be eliminated.

The derivative with respect to r in the second equilibrium equation is

_r[exe'F'r+ (1+ eee)zer] . (220)

Based on the observations for the derivatives with respect to x, the coefficient of _e, in

the derivative with respect to r is 1 and the coefficient of ._r has a maximum absolute

value of 104. The interlaminar stress components _x_ and _e_ are expected to differ by

several orders of magnitude. Therefore, it is reasonable to assume that ¢e, is sufficiently

large relative to e_e ¢x_ in the derivative with respect to r such that the latter term can

be eliminated.

The terms in the second equilibrium equation that are not differentiated are
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_rx, rxe ÷ ee,oee ÷ _e,. (221)

Since the magnitudes of the intralaminar stress components o e° and xxe are about the

same, and the maximum absolute value of rz, is approximately 0.025 for the load cases

investigated while the maximum absolute value of ee, is less than 10 "5, it can reasonably

be assumed that the term r,,,x xe is sufficiently large compared to eer o so such that the

latter term can be eliminated. Since the interlaminar stress component ,e, is expected

to be several orders of magnitude smaller than r x° , the magnitude of the term rxr'r x°

may be comparable to the magnitude of ¢e,.

Based on these assumptions, the second equilibrium equation becomes

o_Ze _(r_er) _err_ + - rz,_ z° + = 0 , (222)
/ix Or

which is a nonlinear partial differential equation.

3. Simplification of the Third Equilibrium Equation

The derivative with respect to x in the third equilibrium equation, eq. (214c), is

_[(_rx,)o.x + (2eev),.e + _r]. (223)

The maximum absolute value of the displacement gradient ee, is less than lff s and the

maximum absolute value of the rotation rz, is 0.025. Therefore, the magnitude of the

(-rx,)o zx term can be assumed tobe sufficiently large compared to the (2eze)_ ze term

such that the latter term can be eliminated. However, since %x, is expected to be several

orders of magnitude smaller than o _, the magnitude of (- r,,) o_* can be expected to be

comparable to the magnitude of t*'. Therefore, based on these observations, the
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derivative with respect to x becomes

_[(-r_,)o" + _'1" (224)

The derivative with respect to r in the third equilibrium equation is

_rr r[(-rxr )'_'r+ (2Cot)toP + or1. (225)

Since the interlaminar stress components _'" and zer are expected to differ by several

orders of magnitude, and in light of the magnitudes of the coefficients of these

components, it can be assumed that (-rx,) xxr is sufficiently large compared to (2eo,) _e,

such that the latter term can be eliminated. The interlaminar stress component o" is

expected to be small relative to _x,. Therefore, the magnitude of the ( - rx, )'¢zr term can

be assumed to be comparable to the magnitude of the o'" term. Based on these

observations, the derivative with respect to r becomes

-_ r[(- r_,) "t'r + or I . (226)

The terms in the third equilibrium equation that are not differentiated are

-2exe _e - (1 + eee)O ee - 2ee, Xe" (227)

Due to the magnitudes of the absolute values of the displacement gradients e:e and ee,,

the terms -2exe _e and -2ee/_ e" can be neglected with respect to the term

(1 + eee ) o ee. Also, due to the magnitude of eee relative to 1, it can be neglected in the

latter term.

Based on the observations of the relative magnitudes of the terms in the third
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equilibrium equation, it can be simplified to

a t,,] 0 o,,] o eer--ax [( - r,,) (P" + + _r r[(- r,,),='+ - = O. (228)

4. Simplification of the Natural Boundary_ Conditions

Since the terms which appear as coefficients of the surface normals n'x and nr in the

natural boundary condition relations, eqs. (215), are identical to the terms being

differentiated with respect to x and r, respectively, in the equilibrium equations, eqs.

(214), the results of the previous sections where the equilibrium equations were

simplified can be used directly to simplify the natural boundary condition relations.

Therefore, based on the magnitude study for the equilibrium equations, the natural

boundary condition relations become

[o-]_,+[(.+,,.),'++,,,,o,]_-,+[+-,]_, =;'* oos,

OR u is specified on S 2

(229a)

and

[,,0]_.+[C2++0)++0+ (I +eee)oee]_ e + [,eq_ r = t" on S2 (229b)

OR v is specified on S2 ,

and

[(-,..)+*+÷.]++
+[(-r+r)xze +(2eer)Oee+,e']_e
+[(-,..)÷'+o"]+, =;+" o, S,

OR w is specified on S2

(2290

However, the coefficients of the surface normal _'e must be analyzed as to the relative

141



magnitudes of the terms in these coefficients. In the coefficient of fie in the first natural

boundary condition relation, eq. (229a), exx can be neglected relative to 1 in the

coefficient of ¢xe. Since the interlaminar stress component xe, is expected to be small

relative to the intralaminar stress component _xe, the term 1:x° can be assumed

sufficiently large compared to rxr¢ e" such that the later term can be eliminated. Based

on these observations, the first natural boundary condition relation becomes

%

[oXX]ix+[eo];o+[e,];, _ t. ons,

OR u is specified on 52 .

(230a)

In the coefficient of n0 in the second natu_ boundary condition relation, e00 is small

relative to 1 such that it can be ignored in the coefficient of o °°. Also, since the

maximum absolute value of exe is less than 104, it can be assumed that the term o °° is

sufficiently large compared to the term (2exe)_ xe such that the latter term can be

eliminated. Therefore, the second natural boundary condition becomes

[e0]ix+[o°°]L+[_°'];, =7-0 ons_

OR v is specified on S2

(230b)

In the coefficient of Ke in the third boundary condition relation, the term (2ee,) oee

can assumed to be small relative to the other two terms, since ee, is small. However,

although ¢e, is expected to be small relative to the intralaminar stress component ¢xe,

and since the maximum absolute value of rz, is approximately 0.025, the magnitude of

the term (-rxr)x ze can be assumed comparable to the magnitude of the term ¢e,.
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Therefore, the third natural boundary condition relation becomes

[(-r..)ox* + x*r] _'.

+I/_+,/+_+÷++,]_0
(230C)

+[Cr,,)e'+o"]_,:," o. s_

OR w is specified on S2

In summary, after simplification by the consideration of the relative magnitudes of

the terms appearing in the equilibrium equations under the assumptions of axisymmetrie

response and loading, and the assumptions of Kirchhoff and Donnell, these equations are

a°+x (9(r_xr) (231a)r--+ =0,
Oz Or

O_Xe _(rfer) forr-- + - rzr Txe + : 0
Or

(231b)

and

<'+÷'}+ "''+°"I-o-:o. (231c)

By the same method, the natural boundary conditions become

u is _cified on S2

(232a)

and
[÷.];. +[0..]_.+ [+.,];,=_0 o. s_

OR v is specified on S2 ,

(232b)
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and

-A (232c)
t • On S2

OR w is specified on S2

In the following chapter, these equations will be solved and the interlaminar stresses

will be calculated for the three cylinders of interest.
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VI. SOLUTION OF THE THREE-DIMENSIONAL EQUILIBRIUM

EQUATIONS FOR THE INTERLAMINAR STRESSES

In chapter five, the three-dimensional equilibrium equations and boundary conditions

were derived for a linear elastic body in cylindrical coordinates for finite strains, under

the assumption of axisymmetric loading and response, and under Kirchhoff's and

Donnell's assumptions for the displacement variables. These steps were performed in

order to obtain three-dimensional equilibrium equations and boundary conditions

compatible with the assumptions and solutions of the previous chapters, which concluded

with the derivation of the intralaminar stress relations. Under these conditions, the

closed-form intralaminar stress relations can be used in the solution of the interlaminar

stress components, analogous to the method implemented by Pagano (Ref. 3).

In this chapter, the first of the equilibrium equations, i.e.

r a°z" + O(rT_r) -0, (233)
& Or

will be solved for the interlaminar stress component _'. Since oXX(x,r) is known at any

point along the length of the cylinder and at any point through its thickness from closed-

form relations obtained previously, the partial derivative with respect to x of o xx is also

known through analytical differentiation of the closed-form solution to _X(x,r).

The interlaminar stress components x er and o rr are assumed to be small relative to

the interlaminar stress component ,x,. For an axisymmetric response, ,e, would be

expected to be small. Other researchers (ref. 7) have found o rr to be small for
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the case of cylinder bending, and that is assumed to be the case for the cylinder

compression problem studied here. Therefore, ._e, and o'" will not be solved for or

calculated in this work. However, the solution method to be presented for the

determination of the interlaminar stress component x'" from the first equilibrium

equation is directly applicable to the determination of the other two interlaminar stress

components.

Ae Solution of the First Equilibrium Equation

The differentiation implicit in eq. (233) can be distributed, and the result simplified

to give

OJ_.._"+ _'" _ a°x+ . (234)
ar r ax

As mentioned previously, the partial derivative appearing on the right-hand side of this

equation can be calculated from the closed-form relation for o"(x,r). For a given layer,

the intralaminar stress component o"(x,r) is given by eqs. (19) and (20), which are the

CLT stress-strain relations, and eqs. (12) and (128), which are the axisymmetric

kinematic relations. They are repeated here for convenience:

CLT Stress-Strain Relations;

where

....--5.... • 5=.0* 5..¥. - o."

m T
_xa = Ql6ex + Q_eo + _Yxo - _o,

(19)
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T

7

(20)

Axisymmetric Kinematic Relations:

O O

gx=gx+Z_
0 0

ee=Ce+Z_

O O

y_ = y_ + z _ ,

(12)

where
:---; p:=o

o c_ ° 1 o_ o w °. o C_°

(128)

In order to proceed with the solution process, the first of eqs. (19) must be

differentiated with respect to x. Since the transformed reduced stiffnesses Q0 are

assumed constant along the length of the cylinder, the partial derivative of o"' with

respect to x, in terms of the strain components is

(235)

Therefore, the partial derivatives of the inplane strain components given in eqs. (12) and

(128) are required. Performing the differentiation results in
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ae x d2u o
- +

Ox dx 2

a% 1 dw °

ax R dx

aye0 d2v °
m

ax dx 2

dw o d2w ° d3w o

dx dx 2 dx 3

(236)

These partial derivatives involve the derivatives of the solutions for the reference surface

displacements u °(x), v °(x), and w °(x). For instance, the first of eqs. (236) involves

the second derivative of u °(x). This term can most easily be derived from the definition

of Nx for the axisymmetric problem, given in eq. (134) as

o W ° d2w °

N z = A11ez + AI2_ - BII dx 2 N:, (237)

where c_° is given by eq. (13) as

o du° +lR.2 du ° l(dw°] 2
"- 2 -

(238)

Substituting eq. (238) into eq. (237), and solving for du.__._*results in
dr

du" _ 1 (Nx+Nxr) A,, W ° Bl, dlw ° 1 (dw*)2 (239)
dx All AnR + A n dx 2 2_"_x } "

Differentiating the above expression once results in

dlu ° _ ___AI2 dw ° +

dx 2 AnR dx

B u d3w o dw o d2w *

A n dx 3 dx dx 2
(240)

Since the solution for wO(x) is known and it is continuous, its derivatives are obtainable
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and the expression in eq. (240) is known for any point along the half-length of the

cylinder.

Substituting eq. (240) into eq. (236) results in an expression for ac.._.__in terms of
igx

derivatives of w"(x), i.e.,

or

OL, _[ An dw* B_l d3w * dw* d2w *"

ae_ A12 dw° BI1 d3w * ( d3w* I
.... .4. 4._ .

igx AIIR dx At1 dx 3 -"-_x 3 )

o o ( d,,,,oI+ dw d2w +z
dx dx2 I,- dx _)

(241)

Since eq. (234) involves differentiation with respect to r, it will be necessary to express

the above equation in terms of r instead of z. This is easily accomplished by substituting

the definition of the local z coordinate, i.e.,

z =r-R, (242)

into the last expression in eq. (241), which results in

(243)

The partial derivative of • e in eqs. (236) involves the constant R, the mean radius

of the cylinder, and the second derivative of we(x), which can be obtained through

differentiation of the solution for w *(x), derived in chapter 3.

a'txe

The partial derivative of Yxe in eq. (236), i.e., B"_-' can be obtained by

differentiating the equation for Yze in terms of we(x) given by eq. (135b), namely,
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* ( Bx_ dzw ° S IY,,e = A _ dx 2 + m .A_

Differentiating this equation once with respect to x results in

(135b)

aYxe Ble d3w *

cgx A_ dx 3

Substituting the expressions for the partial derivatives of

components with respect to x , eqs. (243), (244), and (236),

describing the partial derivative of a xx, eq. (235), results in

(244)

the inplane strain

into the expression

- On -Al_dw* +

+_ I±_,,,'1- rB,,_,3,,,.]t""LR_;J' o,,1_ d_J
J

÷_{_-[d'-'lo,.,[-Z-r_,j }

(245)

This expression can be rewritten in the form

aa "_ _ ldaX:H ! + rlda:X" l

[ dx J [ dx J'
(246)

where

 oxx. •/-fo,l . .
t t

[ t }1 dw ° - [B16 d3w °"

+ 0_2R dx + 0,6 _ dx'

(247a)
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and
d o xxs

dx

(247b)

Therefore, at any axial location along the length of the cylinder, the derivatives defined

in eqs. (247) can be calculated from the derivatives of the solution for w °(x) and the

transformed reduced stiffnesses (_/for the layer which corresponds to the coordinate r.

It should be noted that the derivatives in eqs. (247) are known functions of the x

coordinate. In order to make this point clear and to simplify the notation, the definitions

, ) dx'J

I " t
(248a)

and

I w ]t/_x) - dx - - Q11
(248b)

are introduced. Substituting eqs. (246) and (247) into eq. (234) using the definitions in

eqs. (248) results in the partial differential equation

8_xr(x'r) + _XV(x'r) - {re(x) +rib(x)]}. (249)
a• •

For a specified temperature change, boundary condition, axial load level N x , and axial

position x _', the terms re(x) and b(x) are known quantities. Therefore, at a specified

axial location z =._, eq. (249) becomes a nonhomogeneous ordinary differential equation.

That is,
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dC'(_,r) + C'(x,r) _ {m(_) + r[b(._)]} (250)
dr r

Equation (250) is of the form

dF F
B +-- =g +hr
dr r

(251)

where the substitutions

F=F(r)-_'(_,r); g--m(_') ; h=-b(_') (252)

have been made. By introducing a change of variable according to

r =Gzj (253)

eq. (251) becomes

dF + F = ge z + he 2"
dz

(254)

This differential equation has a homogeneous solution of the form

F_. = A e -z ca
A

F_,. =-- ,
r

(255)

where A is an unknown constant to be determined, and the particular solution

Fp_ t = s e z + 2 t e 2_ . (256)

Substituting eq. (256) into eq. (254) results in

(2s)e z + (3t)e2z = ge z +he 2z - 25 = g ; 3t = h . (257)

Therefore, the particular solution is
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or

2 3

= -gr• _h•2
2 3

(258)

Hence, the solution to the nonhomogeneous ordinary differential equation (251) is

F(r) = A + g- r + h-r2 (259)
r 2 3

Since the step relating the partial differential equation (249) to the ordinary differential

equations (250) and (251) was taken by restricting eqs. (250) and (251) to a particular

x location, it must be realized that the constants A, g, and h appearing in eq. (259) are

unique for each x location. Therefore, g and h in eq. (259) vary along the length of the

cylinder and are known quantities obtained by the relations in eqs. (248), and A =A(x)

is a unique constant for each x location, which will be determined later. Thus, by using

the definitions from eq. (252), and noting that A = A(x) , for a particular axial location

x = _', the solution presented above in eq. (259) becomes

_z,(_-,r) _ A(_) m(_) r b(_) •2 . (260)
• 2 3

It should be noted that since the stress-strain relations of eq. (19) apply only within a

given layer, the solution given in eq. (260) also applies only within a given layer. To

make this distinction clear, a superscript (k), which denotes the layer number from

k = 1 at the inner layer to k = K at the outer layer, will be used from this point onward.

For example, eq. (260) willnow be written
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xx'_(_,r) - ACk)(_) mCk)(X) r bO°(X) r2 , (261)
r 2 3

which is valid in the range

r _-1) _ r _ r <k) (262)

Therefore, for a cylinder with K layers, there are K constants A <k)(_) to be determined

in as many equations (261). In eq. (262), the superscript on r can take on the range

from 0 to K, with r <°)-/R - H / being the radius of the inner surface of the cylinder,
,ib¢/

and rCX) - (R + H] being the radius of theouter surface of the cylinder. Therefore, r ok)

corresponds to the k a' layer interface.

Thus far, the pertinent kinematic relations, constitutive relations, and the first

equilibrium equation have been used to derive the solution form of xx'. Next, the

boundary condition relations of eqs. (232) must be satisfied for each layer of the

cylinder. However, this is a trivial matter since the displacements are specified

everywhere within the cylinder and on its boundaries due to the assumptions of the CLT

analysis.

In this analysis, the adjacent layers arc assumed to have a perfect bond at the layer

interface. This implies that all of the displacement components and interlaminar stress

components are continuous across the interfaces of adjacent layers. As noted in the

previous paragraph, the displacements axe continuous across the interfaces since they

have been prescribed to vary linearly through the thickness of the cylinder wall in the

CLT analysis of chapters 2, 3, and 4. However, the interface condition for the

continuity of the interlaminar stress components has not yet been addressed. In order to
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solve for the unknown constantsAtt)(_'), the interface continuity of the interlaminar

stress component "cxr will be used. For the k=l through K layers, there are (K-1)

interface continuity conditions and two surfaces on which _x, can be specified, namely

the surfaces at the inner and outer radii of the cylinder. This results in (K+ 1) conditions

from which the K unknown constants Aet)(_ ') can be determined. Since the interface

conditions for ex, must be satisfied in order to comply with the assumption of perfectly

bonded layers mentioned previously, the boundary condition for ._x, at either the inner

or outer radius will have to be ignored. Since the axial loading investigated thus far in

this work does not consist of an applied traction on either the inner or outer surfaces of

the cylinder, the condition

e'""(_,r _) = o,

will be imposed. Therefore, for a particular axial location, x = _',

describing _xr for the fast layer at the inner radius can be written as

(263)

the equation

,_,o'(£,rco))- AO_(_') rCO_mO)ff) _ (rco_)2.bo)(_) --0. (264)
r to) 2 3

This equation can be solvedforA o)(_.) to give

Ao)(i)= r_22mt_(_ ) + r_bO)(i)3
(265)

where the constants m°)(_ ") and b°)(_ ") are calculated from eqs. (248) using values for

the transformed reduced stiffnesses Q# for the first (inner) layer of the cylinder.

The interface continuity condition for _' is
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xx,_'l_(:_) = _x,°°(_) (266)

over the range of k = 1 to K-1. Substituting eq. (261) into eq. (266) results in

Att'l)(x ") rCk)mCk.l)(£ ) _ r_btk-l)(_" )
r _ 2 3

AO0(x ") r°)mtk)(_, ) _ (r_)zbtk)(_") ,
r Ct) 2 3

(267)

which can be rearranged to provide a recursive relation for A tt.l)(_), i.e.,

ACk'1)(£')=

Atk)(_) + (rtt))___Z[mtt÷')C_)_mCk)(_)] + (rtk))2[bttq)C_')_btk)(_)]
2 3 •

(268)

Hence, the g constants Att)(_) in the equations describing xx'(_',r) are known quantities

and the interlaminar stress component x x' can be calculated at any radial location r at

a specified axial location x =_" where the CLT solutions have been previously calculated.

B. Calculation of the Interlaminar Stress Component _'*

In the following, numerical results will be presented which illustrate the relations

between the interlaminar stress component C' and the radial coordinate r for the three

cylinders analyzed in this investigation. Clamped boundary conditions are enforced,

compressive axial loads of N ffi10% N" and N ffi90% N* are applied, and thermally-

induced preloading effects corresponding to a temperature change of-28O°F are included

in the CLT solutions used for the calculation of the terms of the solution of xx' involving

the intralaminar stress component o xx. As noted in the previous section, the solution for

xtt)(£,r) is calculable only after an axial position x=_ has been selected and the
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derivatives appearing in the definitions of the "constants" A tk)(_ ), m (k)(_-), and b Ck)(_")

have been calculated for each layer. The axial positions investigated will be: (a) The end

of the cylinder at x=+L/2; (b) The axial position x where the rotation rx, has a

maximum absolute value, and; (c) The axial position x where the interlaminar shear

stress resultant, Qx, has a maximum absolute value. An expression relating Qx to the

CLT solution is contained in the axisymmetric version of eq. (126b), namely,

rim, +Ndw
O,- "dx"

¢269)

The term d-'_ can be calculated from the expression for M_ in eq. (134), i.e.,

DI 1 d 2w * M r ' (270)= Bile _ + Bl2wO + BI6Y_O -M,
R dx 2

0 0

which,by substitutingtheexpressionsrelatinge, and Y_e tothesolutionforw°(x) and

itsderivatives,i.e.,eqs. (135),and differentiatingthe resultonce with respectto x

"_x _A n +-_ D,,) dx' + _2 AnR ) dx
(271)

becomes

The linear form of Q,, is obtained by eliminating the second term in eq. (269), i.e.,

dMx (272)

as given by equation (271). Since the solution for xx" was obtainedfrom the linearized

form of the first equilibrium equation, then it is expected that the formal definition of the

resultant Qx, i.e,
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should agree with the expression for Qx<__.> given in eqs. (271) and (272).

Therefore, the axial position x corresponding to the largest absolute value of

(273)

(274)

will be one of the axial locations used to calculate the relation between _x" and r.

Hence, as a check of the interlaminar stress calculation for :_', the values of _x, will

be numerically integrated along the radial direction as shown in eq. (273), and the result

will be compared to that calculated through eq. (274).

C. Numerical Results for the Interlaminar Stress Component T:': Case of

Thermally-Induced Preloading Effects and a Compressive Axial Load with

Clamped Boundary Conditions

Fig. 41 through Fig. 45 illustrate the relationship between the normalized interlaminar

shear stress and the radial coordinate p for the compressive axial load levels

N = 10% N* and N = 90% N* at various locations along the length of the three cylinders.

The shear stress _x, has been normalized by the quantity (NIH), as the intralaminar

stress components were in chapter 4. The radial coordinate has been redefined as p,

where
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r - R z (275)
p --

H H

and
-0.5 _; p < +0.5 . (276)

Each figure represents the inteflaminar shear stress response of the three cylinders for

the two load cases and a particular axial location. In each of the figures, horizontal grid

lines and symbols are used to designate the 15 layer interfaces. Fig. 41 illustrates the

shear stress response at the end of the cylinders, x= +L/2, associated with the low axial

load level. While distribution of the shear stress in the symmetric laminate is shown to

be symmetric about the mean radius, p =0, the distributions of the shear stress in the

two unsymmetric cylinders are skewed, with the shear stress having larger magnitudes

to either side of the mean radius. For instance, the [02/'45/+4514T laminate has a peak

shear stress magnitude at a radius two layer thicknesses inside of the mean radius. This

behavior leads to larger slope discontinuities in the intedaminar shear stress at the

interface of layers of differing orientations on the side of the mean radius to which the

response is skewed. Conversely, the slope discontinuities are smaller to the other side

of the maximum response locatiom Due to the opposite signs of the B matrix terms, the

[+45/-45/02141, laminate has a peak interlaminar shear stress at a radial location outside

of the mean radius. These trends can be observed for the higher load level as well, i.e.,

the case represented in Fig. 42, which also represents the interlaminar stress component

at the end of the cylinder. However, partly due to the scale used to illustrate the higher

load level response plots, the effects appear to be smaller. It is also seen that the shear

stress at the end of the cylinder for the [02/-45/"t'4514 T laminate is larger for both the low
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and high load levels then for the other two laminates.

For the low load level, the axial location of the maximum shear stress resultant Q,,

is at the ends of all three cylinders. However, for the high load level the axial location

of the largest Qx occurs at x/L=0.480 for the [+45/-45/0212s and [02/-45/+4514T

cylinders and at x/L=0.478 for the [+45/'45/0214T cylinder. The interlaminar shear

stress response for this case is presented in Fig. 43. Again, the [02/--45/+4514T cylinder

has the largest shear stress magnitude. Shown in this plot is the fact that the shear stress

of all three cylinders at this axial location is also skewed relative to the mean radius of

the cylinder. The reason for this behavior is not immediately apparent, but it could be

a function of the magnitudes of the first and third derivatives of w *(x) at axial locations

away from the end of the cylinders, as they appear in the relations for the solution for

_x,, relative to the magnitudes of these terms at the ends of the cylinders.

Fig. 44 and Fig. 45 represent the interlaminar shear stress response at axial locations

for which the cylinders possess peak magnitudes of the rotation, rx,, for the low and

high load levels, respectively. These axial locations are in the vicinity of x/L=.470 for

all three laminates at the high load level, and at x/L- 0.480 for the [+45/-45/0212s and

[02/-45/+4514r cylinders and at rdL-'0.5 for the [+45/-45/0214r cylinder at the low load

level. Again, it is noted that the response of all three cylinders is skewed relative to the

mean radius. For the shear stress results previously discussed, i.e., at the low and high

load level and where the axial locations were that of maximum Qx and the cylinders'

end, the [02/-.45/+4514r cylinder has the largest overall shear stress magnitude of the two

three cylinders. This is also true for the high load level where the axial location is that
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of the maximumrotation rx,, as seen in Fig. 45. However, for the low load level and

at the axial location of maximum rotation r,,,, the overall magnitude of the shear stress

for the [+45/-45/0_r cylinder is larger than the overall magnitude for the [0J-45/+4514r

cylinder. This reversal in trend indicates that the thermally-induced preloading effects

dominate the response at the low load level. This characteristic was observed with the

interlaminar stresses discussed in chapter 4.

The responses shown in Fig. 41 through Fig. 45 where numerically integrated using

Simpson's 1/3 quadrature rule. Since the relation describing Tx" as a function of r is

parabolic in r, and Simpson's quadrature involves approximation of the data by a series

of parabolic segments, the results of the numerical integration by Simpson's rule are

independent of the number of data points used. The results presented in the figures were

numerically integrated on a layer-by-layer basis and the integration results were summed,

as indicated in eq. (273). Also, the lineafized relation for the shear resultant Qx, given

by eq. (274) was calculated at the axial location corresponding to that at which the x x'

data was obtained for each relation in each figure. These steps were conducted as a

cheek of the accuracy of the solution for _x'. The results of these calculations are

presented in Table IV. The fight-most column of Table IV is the CLT relation for the

shear resultant Qx as given in eq. (274), and the second column from the right is the

result of Simpson's quadrature on the xx, data. It is seen that there is excellent

agreement between the two relations for all load eases and axial locations investigated.

This result suggests that the solution for _x, derived from the linearized version of the

first equilibrium equation, eq. (233), is accurate for these cylinders under the load levels
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and boundary conditions studied.

This chapter brings to a close the investigation of the displacement and stress

response of unsymmetrically laminated cylinders. Though specific cylinders were

considered, general conclusions can be drawn from the results presented. A discussion

of these conclusions is the subject of the final chapter.
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Table IV. Comparison of the Shear Resultant Qx as Calculated from the Interlaminar

Shear Stress r_ and the Derivative of the CLT Relation for Mx.

Cylinder
Stacking

Sequence

[ +45/-45/0_s 10%

[+45/-45/0_]4T 10%

[0_/-45/+4514r 10%

[+45/-45/0z_ 10%

[+45/-45/0;]4r 10%

[0_/--45/+4514T 10 %

[+45/-45/0z_s 90%

[+45/-45/0r]4T 90%

[0-/1"45/+ 4514T 90_

[+45/-45/0_s 90%

[+45/-45/0z]4r 90%

[0_/-45/+4514T 90%

[+45/--45/0_s 90%

[+45/-45/0_]_r 90%

[_/.-45/+4514-r

normalized to correlate with

Axial Load Axial

Level, Location
N/N" Criterion

90%

Cyl. End

Cyl. End

Cyl. End

Max. ru

Max. r,_

Max. ru

Cyl. End

Cyl. End

Cyl. End

Max. r u

Max. ru

Max. ru

Max. Qx

Max. Q_

Max. Q_

Axial

Location,
x/L

dx

0.5 0.0157 0.0158

0.5 0.0149 0.0149

0.5

0.477

0.5

0.485

0.5

0.5

0.5

0.470

0.468

0.0182

0.00572

0.0183

0.00572

0.0149 0.0149

0.00909 0.00913

0.00524 0.00524

0.00454 0.00456

0.00650

0.00846

0.00798

0.01010

0.00954

0.470

0.480

0.478

0.480

0.00654

0.00851

0.00803

0.01014

0.00954

0.00888 0.00892

0.01119 0.00127
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VH. CONCLUSIONS

A. Discussion of Displacement Results

In chapter 3, results were presented for the mid-plane displacements u °(x), v °(x),

and w °(x) as they vary along the length of one symmetrically laminated cylinder and two

unsymmetrically laminated cylinders with equal and opposite B matrix terms. From the

results for the preloading response due to thermal effects, it was observed thatall of the

cylinders expand axially due to the negative value of the effective axial thermal expansion

coefficient of the cylinders and the negative temperature change, AT, from consolidation

temperature to ambient temperature. In addition, all three cylinders respond to the

temperature change by a reduction in the radii of the cylinders. For the symmetric

cylinder, the tangential displacement is zero and radial displacement is constant along the

cylinder's length. For the unsymmetric cylinders, the tangential and radial displacements

vary along the cylinders' length, particularly near the ends. These two cylinders' ends

"curl" radially and twist, producing a boundary layer effect. The direction of the curl

for the cylinders is opposite, depending on the sign of the thermally induced moment

M r, which is a consequence of the opposite signs of the B matrix terms for these two

unsymmetric cylinders. Any unsymmetric laminate will exhibit this characteristic. This

thermally induced curl and twist must be aco_unted for in the boundary conditions for

subsequent axial loading and could have an effect on the onset of buckling of the

cylinders. This is because the radius at the end of an unsymmetric cylinder through

which the axial load is applied is different from the radius away from the ends.
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Displacementresults of the caseof compressiveaxial load, including the thermally-

induced preloading effects discussedabove, indicate that the thermal effects have a

measurableinfluence on the radial displacementsunder axial load. Neglecting the

thermally-inducedpreloadingeffectsresultsin smallerradial deformations. For a highly

unsymmetricstackingsequence,theeffectsbecomelarger. The load-inducedaxial and

tangential displacements appear to be relatively unaffected by the thermally-induced

preloading effects.

The shape and magnitude of the tangential and radial displacement responses change

as the level of the compressive axial load increases. In particular, the length of the

boundary layer, where the variation of the tangential and radial displacements fluctuate,

increases as the load level increases. The axial displacement remains virtually linear

along the axial direction, even at the high load level.

Comparison of the displacement results for simply supported and damped boundary

conditions reveal that the simply supported case yields a larger range of tangential and

radial displacements for each cylinder although the axial displacement response is about

the same.

An important conclusion is that if unsymmetricaUy laminated cylinders are to be

analyzed or manufactured, it is important to include the thermally-induced preloading

effects not only in the prediction of the overall displacement behavior of the cylinder

under compressive axial loading, but also in the specification of the end conditions for

both the analysis and the fixture design. The extent to which these effects are important

depends on the material properties, stacking sequence, and the axial load level.
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B. Discussion of Intralaminar Stress Results

An interesting observation was made of the intralaminar stress results in chapter 4.

At the low load level investigated, N = 10%N', the fiber-direction stresses, oii , in the

+45 ° layers is larger than the fiber-direction stresses in the 0 ° degree layers of the

[+45/-45/0_zs, [+45/-45/0_]4T, and [02/-45/+4514T cylinders. This is surprising since

the 0 ° layers have fibers aligned with the axial load and arc expected to bear the majority

of the axial load. This result indicates that at low load levels the thermally-induced

preloading effects dominate the fiber-direction intralaminar stress response. The

intralaminar stress component perpendicular to the fibers, o22, and the intralaminar shear

stress component, _2, are small relative to the fiber-direction stresses.

When the axial load level is increased to Nf90%N', the thermally-induced

preloading effects are seen to be in the background, based on the observation that now

the 0 ° layers have a larger fiber-direction magnitude than the +45 ° layers, as would be

expected for a cylinder subject to large axial loads. The intralaminar stress component

perpendicular to the fibers, 022, is observed to be compressive. This result virtually

eliminates the potential for matrix micro-cracking due to this stress component. The

possibility of inplane shear failure also seems low, since the magnitude of _ is

observed to be low, even for this high load level. It should be noted that the application

of the relations for the principal material stress components presented in chapter 4 to

conventional CLT plane-stress failure theories can easily be accomplished, although it

was not done as part of this work.
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C. Discussion of Interlaminar Stress Results

In order to more fully develop the relations for the material failure modes of the

composite cylinders, a solution for the interlaminar shear stress _x, was developed and

used to calculate the interlaminar shear stress for the cylinders and load cases

investigated for the intralaminar stresses. It was reasoned that the remaining interlaminar

stresses _0r and o" are small relative to exr in the context of axisymmetric loading.

The solution for the interlaminar shear stress ex, was derived through a rational

simplification of the three-dimensional equilibrium equation for the axial direction.

Based on the excellent comparison between the results of numerically integrating the

interlaminar shear stresses and the relation for the linearized shear stress resultant Qx

from the CLT solution of the third chapter, it is recognized that the solution obtained for

the intralaminar shear stress was accurate. It was hoped that this would be the case since

the method used to simplify the three-dimensional equilibrium equation, and the solution

used to obtain the other stress component appearing in the equilibrium equation, a=,

both utilized the assumptions of Kirchhoff and Donnell.

It is observed that at the ends of the cylinders, the interlaminar shear stress response

of the symmetric cylinder is symmetric with respect to the mean radius, R, or p =0.

The two unsymmetric cylinders, with [02/'45/+4514T and [+451-45/O-z]4T stacking

sequences and equal but opposite B matrix terms, have peak interlaminar shear stresses

at radial locations to the inside and outside of the mean radius. However, the shape of

the interlaminar shear stress response through the cylinder wall is seen to vary along the

length of the cylinder. In particular, for both the low and high load levels, the location
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of peak interlaminar stress for the symmetric cylinder is seen to move away from the

mean radius as the axial location at which the response is calculated is varied from the

end of the cylinder, x/Lffi0.5, to the axial location of peak rotation, rx,. This is also

true as the axial location is varied from the end of the cylinder to the axial location of

peak Q_, for the high load level.

It is also observed that the axial location of peak Q_ occurs at the end of the

cylinder, x/L=0.5, for the low load level, while the axial location of peak r,, is at

x/L--0.48 for the high load level. For this load level the interlaminar shear stress

response is skewed relative to the mean radius.

Comparing the results for the interlaminar shear stress calculated at the axial location

of peak rotation, rz,, for the low and high load levels, reveals that the [+45/-45/0z]4r

cylinder has the largest shear stress for the low load level, while the other unsymmetrie

cylinder has the largest shear stress for the high load level. This difference is yet again

an indication of the thermally-induced preloading effects dominating the cylinder response

at low load levels.
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